skip to main content


Title: Flash sintering of yttria‐stabilized zirconia powders coated with nanoscale films of alumina by atomic layer deposition
Abstract

The addition of small quantities of aluminum oxide (Al2O3) to 8 mol% yttria‐stabilized zirconia (8YSZ) benefits conventional sintering by acting as a sintering aid and altering grain growth behavior. However, it is uncertain if these benefits observed during conventional sintering extend to flash sintering. In this work, nanoscale films of Al2O3are deposited on 8YSZ powders by particle atomic layer deposition (ALD). The ALD‐coated powders were flash sintered using voltage‐to‐current control and current rate experiments. The sintering behavior, microstructural evolution, and ionic conductivities were characterized. The addition of Al2O3films changed the conductivity of the starting powder, effectively moving the flash onset temperature. The grain size of the samples flashed with current rate experiments was ~65% smaller than that of conventionally sintered samples. Measurement of grain size and estimates of sample density as a function of temperature during flash sintering showed that small quantities of Al2O3can enhance grain growth and sintering of 8YSZ. This suggests that Al2O3dissolves into the 8YSZ grain boundaries during flash sintering to form complexions that enhance the diffusion of species controlling these processes.

 
more » « less
NSF-PAR ID:
10452575
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
104
Issue:
6
ISSN:
0002-7820
Page Range / eLocation ID:
p. 2472-2482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While monazite (LaPO4) does not flash sinter even at high fields of 1130 V/cm and temperatures of 1450°C, composite systems of 8YSZ–LaPO4and Al2O3–LaPO4have been found to more readily flash sinter. 8YSZ added to LaPO4greatly lowered the furnace temperature for flash to 1100°C using a field of only 250 V/cm. In these experiments,‐Al2O3alone also did not flash sinter at 1450°C even with high fields of 1130 V/cm, but composites of Al2O3–LaPO4powders flash sintered at 900‐1080 V/cm at 1450°C. Alumina–monazite (Al2O3–LaPO4) composites with compositions ranging from 25 vol% to 75 vol% Al2O3were flash sintered with current limits from 2 to 25 mA/mm2. Microstructures were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A eutectic microstructure was observed to form in all flash sintered Al2O3–LaPO4composites. With higher power (higher current limits), eutectic structures with regular lamellar regions were found to coexist in the channeled region (where both the current and the temperature were the highest) with large hexagonal‐shaped‐Al2O3grains (up to 75 m) and large irregular LaPO4grains. With lower power (lower current limits), an irregular eutectic microstructure was dominant, and there was minimal abnormal grain growth. These results indicate that Al2O3–LaPO4is a eutectic‐forming system and the eutectic temperature was reached locally during flash sintering in regions. These eutectic microstructures with lamellar dimensions on the scale of 100 nm offer potential for improved mechanical properties.

     
    more » « less
  2. Abstract

    The mechanical properties of Al2O3–LaPO4composites with varying microstructures produced by flash sintering and conventional sintering are evaluated. Specifically, Vickers and Knoop hardness values were measured and calculated for different resultant microstructures, including eutectic microstructures with varying layer thickness, polycrystalline (noneutectic) microstructures, and single‐phase samples of Al2O3, LaPO4, and 8YSZ. The findings indicate that eutectic microstructures exhibited higher hardness values than polycrystalline counterparts on the flash‐sintered sample. However, the hardness values of eutectic microstructures with varying layer thicknesses show no significant or systematic variation. The grain size, indentation size, eutectic colony size, indentation shape (elastic recovery in Knoop indentations), and crack propagation pathways in the indented samples are also discussed. Overall, the results suggest that Al2O3–LaPO4eutectic composites have higher hardness than their polycrystalline counterparts and have great potential as abradable coatings with high machinability and durability.

     
    more » « less
  3. Abstract

    Aluminum nitride (AlN) is a promising material for electronic substrates and heat sinks. However, AlN powders react with water that adversely affects final part properties and necessitates processing in organic solvents, increasing the cost of AlN parts. Small quantities of yttrium oxide (Y2O3) are commonly added to AlN particles to enable liquid phase sintering. To mitigate the reaction of AlN particles with water, particle atomic layer deposition (ALD) was used to coat AlN powders with conformal films of Y2O3prior to densification and powder processing. When AlN particles were coated with 6 nm thick films of amorphous Y2O3, the hydrolysis reaction was significantly suppressed over 48 h, demonstrating that Y2O3nanofilms on AlN powders act as a barrier coating in an aqueous solution. AlN powders with Y2O3addition by particle ALD sintered to high relative densities (≥90% theoretical) after sintering at 1800°C for 50 min.

     
    more » « less
  4. Abstract

    The properties of technical ceramics are highly dependent on their microstructure, which evolves during sintering. Sintering is the process by which ceramic parts are subjected to high temperatures to activate chemical diffusion and the consumption of porosity. During the initial stage of sintering, interparticle necks between neighboring particles form and subsequently increase in size, consuming porosity as the particle centers move closer together. To experimentally determine how this process depends on particle surface composition, particle atomic layer deposition (ALD) was used to deposit a thin film of amorphous aluminum oxide (Al2O3) onto yttria‐stabilized tetragonal zirconia (3YSZ) particles, producing core‐shell structured powders. The uniformity of the Al2O3film was confirmed with transmission electron microscopy and energy dispersive spectroscopy. Scanning electron microscopy was used to observe microstructural evolution during sintering, and the dihedral angles of Al2O3and 3YSZ grains were measured to determine the ratio of interfacial energies between the 3YSZ|3YSZ, 3YSZ|Al2O3, and Al2O3|Al2O3interfaces. Analysis of the densification kinetics revealed that the initial stage of densification is dependent on the material at the surface of the particles (ie, the Al2O3film) and is controlled by the diffusion of Al3+cations through Al2O3. Once the Al2O3film has coalesced, the sintering behavior is controlled by the densification of the core material (3YSZ). Thus, core‐shell powders fabricated by particle ALD sinter by a two‐step process where the kinetics are dependent on the material present at interparticle contacts.

     
    more » « less
  5. In situ X-ray diffraction measurements at the Advanced Photon Source show that alpha-Al2O3 and MgAl2O4 react nearly instantaneously and completely, and nearly completely to form single-phase high-alumina spinel during voltage-to-current type of flash sintering experiments. The initial sample was constituted from powders of alpha-Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3-stabilized ZrO2 (8YSZ) mixed in equal volume fractions, the spinel to alumina molar ratio being 1:1.5. Specimen temperature was measured by thermal expansion of the platinum standard. These measurements correlated well with a black-body radiation model, using appropriate values for the emissivity of the constituents. Temperatures of 1600-1736 degrees C were reached during the flash, which promoted the formation of alumina-rich spinel. In a second set of experiments, the flash was induced in a current-rate method where the current flowing through the specimen is controlled and increased at a constant rate. In these experiments, we observed the formation of two different compositions of spinel, MgO center dot 3Al(2)O(3) and MgO center dot 1.5Al(2)O(3), which evolved into a single composition of MgO center dot 2.5Al(2)O(3) as the current continued to increase. In summary, flash sintering is an expedient way to create single-phase, alumina-rich spinel. 
    more » « less