skip to main content


Title: Melatonin safeguards against fatty liver by antagonizing TRAFs‐mediated ASK1 deubiquitination and stabilization in a β‐arrestin‐1 dependent manner
Abstract

Melatonin has been previously shown to prevent nonalcoholic fatty liver disease (NAFLD), yet the underlying mechanisms are poorly understood. Here, we identified a previously unknown regulatory action of melatonin on apoptosis signal‐regulating kinase 1 (ASK1) signaling pathway in the pathogenesis and development of NAFLD. Although melatonin administration did not alter food intake, it significantly alleviated fatty liver phenotypes, including the body weight gain, insulin resistance, hepatic lipid accumulation, steatohepatitis, and fibrosis in a high‐fat diet (HFD)‐induced NAFLD mouse model (in vivo). The protection of melatonin against NAFLD was not affected by inactivation of Kupffer cell in this model. In NAFLD mice liver, ASK1 signal cascade was substantially activated, evidence by the enhancement of total ASK1, phospho‐ASK1, phospho‐MKK3/6, phospho‐p38, phospho‐MKK4/7, and phospho‐JNK. Melatonin treatment significantly suppressed the ASK1 upregulation and the phosphorylation of ASK1, MKK3/6, MKK4/7, p38, and JNK. Mechanistically, we found that lipid stress triggered the interaction between ASK1 and TNF receptor‐associated factors (TRAFs), including TRAF1, TRAF2, and TRAF6, which resulted in ASK1 deubiquitination and thereby increased ASK1 protein stability. Melatonin did not alter ASK1 mRNA level; however, it activated a scaffold protein β‐arrestin‐1 and enabled it to bind to ASK1, which antagonized the TRAFs‐mediated ASK1 deubiquitination, and thus reduced ASK1 protein stability. Consistent with these findings, knockout of β‐arrestin‐1 in mice partly abolished the protection of melatonin against NAFLD. Taken together, our results for the first time demonstrate that melatonin safeguards against NAFLD by eliminating ASK1 activation via inhibiting TRAFs‐mediated ASK1 deubiquitination and stabilization in a β‐arrestin‐1 dependent manner.

 
more » « less
NSF-PAR ID:
10452612
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Pineal Research
Volume:
67
Issue:
4
ISSN:
0742-3098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    EseN is anEdwardsiella ictaluritype III secretion system effector with phosphothreonine lyase activity. In this work, we demonstrate that EseN inactivates p38 and c-Jun-N-terminal kinase (JNK) in infected head-kidney-derived macrophages (HKDMs). We have previously reported inactivation of extracellular-regulated kinase 1/2 (ERK1/2). Also, for the first time, we demonstrated that EseN is involved in the inactivation of 3-phosphoinositide-dependent kinase 1 (PDK1), which has not been previously demonstrated for any of the EseN homologs in other species. We also found that EseN significantly affected mRNA expression ofIL-10, pro-apoptoticbaxa, andp53, but had no significant effect on anti-apoptoticbcl2or pro-apoptotic apoptotic peptidase activating factor 1. EseN is also involved in the inhibition of caspase-8 and caspase-3/7 but does not affect caspase-9 activity. Repression of apoptosis was further confirmed with flow cytometry using Alexa Fluor 647-labeled annexin V and propidium iodide. In addition, we found that theE. ictaluriT3SS is essential for the inhibition of IL-1β maturation, but EseN is not involved in this process. EseN did not affect cell pyroptosis, as indicated by the lack of EseN impact on the release of lactate dehydrogenase from infected HKDM. The transmission electron microscopy data also indicate that HKDM infected with WT or aneseNmutant died by apoptosis, while HKDM infected with the T3SS mutant more likely died by pyroptosis. Collectively, our results indicate thatE. ictaluriEseN is involved in inactivation of ERK1/2, p38, JNK, and PDK1 signaling pathways that lead to modulation of cell death among infected HKDMs.

    IMPORTANCE

    This work has global significance in the catfish industry, which provides food for increasing global populations.E. ictaluriis a leading cause of disease loss, and EseN is an important player inE. ictalurivirulence. TheE. ictaluriT3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions ofE. ictaluriEseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.

     
    more » « less
  2. Abstract

    While extensive investigations have been devoted to the study of genetic pathways related to fatty liver diseases, much less is known about epigenetic mechanisms underlying these disorders. DNA methylation is an epigenetic link between environmental factors (e.g., diets) and complex diseases (e.g., non‐alcoholic fatty liver disease). Here, it is aimed to study the role of DNA methylation in the regulation of hepatic lipid metabolism. A dynamic change in the DNA methylome in the liver of high‐fat diet (HFD)‐fed mice is discovered, including a marked increase in DNA methylation at the promoter of Beta‐klotho (Klb), a co‐receptor for the biological functions of fibroblast growth factor (FGF)15/19 and FGF21. DNA methyltransferases (DNMT) 1 and 3A mediate HFD‐induced methylation at theKlbpromoter. Notably, HFD enhances DNMT1 protein stability via a ubiquitination‐mediated mechanism. Liver‐specific deletion ofDnmt1or3aincreasesKlbexpression and ameliorates HFD‐induced hepatic steatosis. Single‐nucleus RNA sequencing analysis reveals pathways involved in fatty acid oxidation inDnmt1‐deficient hepatocytes. Targeted demethylation at theKlbpromoter increasesKlbexpression and fatty acid oxidation, resulting in decreased hepatic lipid accumulation. Up‐regulation of methyltransferases by HFD may induce hypermethylation of theKlbpromoter and subsequent down‐regulation ofKlbexpression, resulting in the development of hepatic steatosis.

     
    more » « less
  3. Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a “conveyor belt” mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.

     
    more » « less
  4. Abstract

    Protein ubiquitination regulates protein stability, cellular localization, and enzyme activity. Deubiquitinases catalyze the removal of ubiquitin from target proteins and reverse ubiquitination. USP13, a deubiquitinase, has been shown to regulate a variety of cellular responses including inflammation; however, the molecular regulation of USP13 has not been demonstrated. In this study, we revealed that USP13 is degraded in response to lipopolysaccharide (LPS) in Kupffer cells. USP13 levels are significantly decreased in inflamed organs, including liver tissues from septic mice. LPS reduces USP13 protein stability, not transcription, in Kupffer cells. Furthermore, LPS increases USP13 polyubiquitination. Inhibition of proteasome, but not lysosome or immunoproteasome, attenuates LPS‐induced USP13 degradation, suggesting USP13 degradation is mediated by the ubiquitin‐proteasome system. A catalytically inactive form of USP13 exhibits similar degree of degradation compared with USP13 wild‐type, suggesting that USP13 degradation is not dependent on its activity. Furthermore, USP13 degradation is dependent on new protein synthesis. Inhibition of c‐Jun N‐terminal kinase (JNK) attenuates USP13 degradation, indicating that JNK‐dependent new protein synthesis is necessary for USP13 degradation. This study reveals a molecular mechanism of regulation of USP13 degradation in Kupffer cells in response to bacterial endotoxin.

     
    more » « less
  5. The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.

     
    more » « less