skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Species diversity of fungal endophytes across a stress gradient for plants
Summary

Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity.

We explored correlations between leaf nutrient availability and endophyte diversity amongPinus muricataandVaccinium ovatumplants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California.

Endophyte richness decreased in plants with higher leaf nitrogen‐to‐phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species.

We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.

 
more » « less
Award ID(s):
1725797
NSF-PAR ID:
10452649
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
228
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 210-225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledonous plants. Many studies have examined these endophytes within a single plant species and/or at small spatial scales, but landscape‐scale variables that determine their community composition are not well understood, either across geographic space, across climatic conditions, or in the context of host plant phylogeny. Here, we evaluate the contributions of these variables to endophyte beta diversity using a survey of foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archipelago. We used Illumina technology to sequence fungal ITS1 amplicons to characterize foliar endophyte communities across five islands and 80 host plant genera. We found that communities of foliar endophytic fungi showed strong geographic structuring between distances of 7 and 36 km. Endophyte community structure was most strongly associated with host plant phylogeny and evapotranspiration, and was also significantly associated with NDVI, elevation and solar radiation. Additionally, our bipartite network analysis revealed that the five islands we sampled each harboured significantly specialized endophyte communities. These results demonstrate how the interaction of factors at large and small spatial and phylogenetic scales shapes fungal symbiont communities.

     
    more » « less
  2. Summary

    Colonization by foliar endophytic fungi can affect the expression of host plant defenses and other ecologically important traits. However, whether endophyte colonization affects the uptake or redistribution of resources within and among host plant tissues remains unstudied.

    We inoculated leaves ofTheobroma cacaowith four common colonizers that range in their effect from protective to pathogenic (Colletotrichum tropicale,Pestalotiopsissp.,Colletotrichum theobromicola, orPhytophthora palmivora). We pulsed the soil with nitrogen‐15 (15N) and then traced15N uptake and its subsequent distribution to whole plants and individual leaves.

    At a whole‐plant level,C. tropicale‐inoculated plants showed significantly greater15N uptake than endophyte‐free plants did in the same pot. Among leaves within plants, younger leaves were particularly enriched in15N, but endophyte inoculation at the individual leaf level did not alter15N distribution within plants. However, leaves co‐inoculated with pathogenicPhytophthoraand protectiveC. tropicaleexperienced significantly elevated15N content as pathogen damage increased, compared with leaves inoculated only with the pathogen. Further, endophyte–pathogen co‐infection also increased total plant biomass.

    Our results indicate that colonization by foliar endophytes significantly affects N uptake and distribution among and within host plants in ways that appear to be context dependent on other microbiome components.

     
    more » « less
  3. Abstract

    Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within‐host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7‐yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient‐induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host,Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relativeAndropogoncover, endophyte diversity did not covary with live plant biomass orAndropogoncover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.

     
    more » « less
  4. Despite colonizing nearly every plant on Earth, foliar fungal symbionts have received little attention in studies on the biogeography of host-associated microbes. Evidence from regional scale studies suggests that foliar fungal symbiont distributions are influenced both by plant hosts and environmental variation in climate and soil resources. However, previous surveys have focused on either one plant host across an environmental gradient or one gradient and multiple plant hosts, making it difficult to disentangle the influence of host identity from the influence of the environment on foliar endophyte communities. We used a culture-based approach to survey fungal symbiont composition in the leaves of nine C3 grass species along replicated elevation gradients in grasslands of the Colorado Rocky Mountains. In these ecosystems, the taxonomic richness and composition of foliar fungal symbionts were mostly structured by the taxonomic identity of the plant host rather than by variation in climate. Plant traits related to size (height and leaf length) were the best predictors of foliar fungal symbiont composition and diversity, and composition did not vary predictably with plant evolutionary history. The largest plants had the most diverse and distinctive fungal communities. These results suggest that across the ~ 300 m elevation range that we sampled, foliar fungal symbionts may indirectly experience climate change by tracking the shifting distributions of plant hosts rather than tracking climate directly. 
    more » « less
  5. Abstract Background

    While a considerable amount of research has explored plant community composition in primary successional systems, little is known about the microbial communities inhabiting these pioneer plant species. Fungal endophytes are ubiquitous within plants, and may play major roles in early successional ecosystems. Specifically, endophytes have been shown to affect successional processes, as well as alter host stress tolerance and litter decomposition dynamics—both of which are important components in harsh environments where soil organic matter is still scarce.

    Results

    To determine possible contributions of fungal endophytes to plant colonization patterns, we surveyed six of the most common woody species on the Pumice Plain of Mount St. Helens (WA, USA; Lawetlat'la in the Cowlitz language; created during the 1980 eruption)—a model primary successional ecosystem—and found low colonization rates (< 15%), low species richness, and low diversity. Furthermore, while endophyte community composition did differ among woody species, we found only marginal evidence of temporal changes in community composition over a single field season (July–September).

    Conclusions

    Our results indicate that even after a post-eruption period of 40 years, foliar endophyte communities still seem to be in the early stages of community development, and that the dominant pioneer riparian species Sitka alder (Alnus viridisssp.sinuata) and Sitka willow (Salix sitchensis) may be serving as important microbial reservoirs for incoming plant colonizers.

     
    more » « less