skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalar Simulation and Parameterization of Water Table Dynamics in Tropical Peatlands
Abstract Peatlands cover many low‐lying areas in the tropics. Tropical peatlands are intriguing systems because of their tight coupling between hydrology and carbon storage: They accumulate carbon over thousands of years because of waterlogging, and they remain waterlogged after growing into domed shapes because peat restricts drainage. This feedback between waterlogging and landscape morphology generates landforms with special hydrologic properties that enable simplifications of standard watershed models. In natural tropical peatlands, the water table is always near the surface and infiltration is almost immediate. In addition, water table fluctuations relative to the peat surface are remarkably uniform across tropical peatlands because these peatlands acquire shapes with a uniform topographic wetness index. In this paper, we show that because of these distinctive properties, simple hydrologic models that represent the hydraulic state of a catchment by a scalar quantity that describes total water storage are useful and physically meaningful in tropical peatlands. We demonstrate how to efficiently derive hillslope‐scale parameterizations of transmissivity and specific yield as functions of water table height for a tropical peatland from water table, rainfall, and topographic data. Our findings suggest that natural tropical peatland subcatchments could be usefully modeled as single hydrologic response units for river flow and flood forecasting.  more » « less
Award ID(s):
1923478 1923491 1520762
PAR ID:
10452655
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X Size: p. 9351-9377
Size(s):
p. 9351-9377
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores. 
    more » « less
  2. ABSTRACT AimTropical peatlands are globally significant carbon stores, increasingly threatened by human activities and climate change. However, their ecohydrological responses to shifting water availability remain poorly understood. In this study, we investigate the connections between climate change, hydrology and vegetation dynamics in a coastal tropical peatland in Panama, aiming to understand the effects of future drying on peatland dynamics. LocationBocas del Toro, Panama (9°22′54″N, 82°21′59″W). TaxonAngiosperms. MethodsHigh‐resolution multiproxy palaeoecological data, including pollen and plant macrofossils (vegetation), testate amoebae (water‐table depth) and physical peat properties, are used to explore the relationships between climate change, hydrology and vegetation in a coastal tropical peatland over the past 700 years. Downscaled climate simulations are integrated with this process‐based understanding to project the likely future responses of this coastal peatland to climate change. ResultsWe identify a clear connection between precipitation variability, driven by shifts in the Intertropical Convergence Zone and water‐table dynamics, which subsequently influence changes in the peatland vegetation mosaic. Historical drier periods are marked by the expansion of shrub communities into the open peatland plain. Main ConclusionsPalaeoecological studies incorporating climate and hydrological proxies are essential for understanding both recent and future ecohydrological dynamics of tropical peatlands. Our findings suggest that in response to future climate change, water tables will lower and shrub communities will expand due to rising temperatures and reduced precipitation. Additionally, future sea‐level rise, combined with declining rainfall, may result in seawater intrusion and significant vegetation shifts in coastal tropical peatlands. 
    more » « less
  3. Sphagnum-dominated peatlands store more carbon than all of Earth’s forests, playing a large role in the balance of carbon dioxide. However, these carbon sinks face an uncertain future as the changing climate is likely to cause water stress, potentially reducing Sphagnum productivity and transitioning peatlands to carbon sources. A mesocosm experiment was performed on thirty-two peat cores collected from two peatland landforms: elevated mounds (hummocks) and lower, flat areas of the peatland (hollows). Both rainfall treatments and water tables were manipulated, and CO2 fluxes were measured. Other studies have observed peat subsiding and tracking the water table downward when experiencing water stress, thought to be a self-preservation technique termed ‘Mire-breathing’. However, we found that hummocks tended to compress inwards, rather than subsiding towards the lowered water table as significantly as hollows. Lower peat height was linearly associated with reduced gross primary production (GPP) in response to lowered water tables, indicating that peat subsidence did not significantly enhance the resistance of GPP to drought. Conversely, Sphagnum peat compression was found to stabilize GPP, indicating that this mechanism of resilience to drought may transmit across the landscape depending on which Sphagnum landform types are dominant. This study draws direct connections between Sphagnum traits and peatland hydrology and carbon cycling. 
    more » « less
  4. Abstract Emission of CO2from tropical peatlands is an important component of the global carbon budget. Over days to months, these fluxes are largely controlled by water table depth. However, the diurnal cycle is less well understood, in part, because most measurements have been collected daily at midday. We used an automated chamber system to make hourly measurements of peat surface CO2emissions from chambers root‐cut to 30 cm. We then used these data to disentangle the relationship between temperature, water table and heterotrophic respiration (Rhet). We made two central observations. First, we found strong diurnal cycles in CO2flux and near‐surface peat temperature (<10 cm depth), both peaking at midday. The magnitude of diurnal oscillations was strongly influenced by shading and water table depth, highlighting the limitations of relying on daytime measurements and/or a single correction factor to remove daytime bias in flux measurements. Second, we found mean daily Rhethad a strong linear relationship to the depth of the water table, and under flooded conditions, Rhetwas small and constant. We used this relationship between Rhetand water table depth to estimate carbon export from both Rhetand dissolved organic carbon over the course of a year based on water table records. Rhetdominates annual carbon export, demonstrating the potential for peatland drainage to increase regional CO2emissions. Finally, we discuss an apparent incompatibility between hourly and daily average observations of CO2flux, water table and temperature: water table and daily average flux data suggest that CO2is produced across the entire unsaturated peat profile, whereas temperature and hourly flux data appear to suggest that CO2fluxes are controlled by very near surface peat. We explore how temperature‐, moisture‐ and gas transport‐related mechanisms could cause mean CO2emissions to increase linearly with water table depth and also have a large diurnal cycle. 
    more » « less
  5. Abstract Peatlands are some of the world’s most carbon-dense ecosystems and release substantial quantities of greenhouse gases when degraded. However, conserving peatlands in many tropical areas is challenging due to limited knowledge of their distribution. To address this, we surveyed soils and plant communities in Colombia’s eastern lowlands, where few peatlands have previously been described. We documented peat soils >40 cm thick at 51 of more than 100 surveyed wetlands. We use our data to update a regional peatland classification, which includes a new and possibly widespread peatland type, ‘the white-sand peatland,’ as well as two distinctive open-canopy sub-types. Analysis of peat bulk density and organic matter content from 39 intact peat cores indicates that the average per-area carbon densities of these sites (490–1230 Mg C ha−1, depending on type) is 4–10 times the typical carbon stock of a (non-peatland) Amazonian forest. We used remote sensing to upscale our observations, generating the first data-driven peatland map for the region. The total estimated carbon stock of these peatlands of 1.91 petagrams (Pg C) (2-sigma confidence interval, 0.60–4.22) approaches that of South America’s largest known peatland complex in the northern Peruvian Amazon, indicating that substantial peat carbon stores on the continent have yet to be documented. These observations indicate that tropical peatlands may be far more diverse in form and structure and broadly distributed than is widely understood, which could have important implications for tropical peatland conservation strategies. 
    more » « less