skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: A trait‐based approach to assessing resistance and resilience to wildfire in two iconic North American conifers

Ongoing changes in fire regimes have the potential to drive widespread shifts in Earth's vegetation. Plant traits and vital rates provide insight into vulnerability to fire‐driven vegetation shifts because they can be indicators of the ability of individuals to survive fire (resistance) and populations to persist (resilience) following fire.

In 15 study sites spanning climatic gradients in the southern Rocky Mountains, USA, we quantified variation in key traits and vital rates of two co‐occurring, widely distributed conifers (Pinus ponderosaDouglas ex. P. Lawson & C. Lawson andPseudotsuga menziesii(Mirb.) Franco). We used mixed‐effects models to explain inter‐ and intraspecific variation in tree growth, survival, bark thickness and seed cone production, as a function of species, tree life stage (i.e. diameter, height and age), average climate, local competition and site conditions.

Pinus ponderosawas predicted to survive low‐severity fire at a 23% earlier age thanP. menziesii.Pinus ponderosahad thicker bark and more rapid juvenile height growth, traits conferring greater fire resistance. In contrast,P. menziesiiwas predicted to produce seed cones at a 28% earlier age thanP. ponderosa. For both species, larger individuals were more likely to survive fire and to produce cones. ForP. ponderosa, cone production increased where average actual evapotranspiration (AET) was higher and local competition was lower. More frequent cone production on productive sites with higher AET is an important and underappreciated mechanism that may help to explain greater resilience to fire in these areas.

Synthesis. Our analyses indicated that many plant traits and vital rates related to fire differed betweenPinus ponderosaandPseudotsuga menziesii, with trade‐offs between investment in traits that promote individual defence to fire and those that promote recolonization of disturbed sites. Future changes in fire regimes will act as a filter throughout North American forests, with our findings helping to infer which individuals and populations of two iconic species are most vulnerable to future change and offering a framework for future inquiry in other forests facing an uncertain future.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Ecology
Page Range / eLocation ID:
p. 313-326
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We studied the impacts of climate variability on low‐elevation forests in the U.S. northern Rocky Mountains by quantifying how post‐fire tree regeneration and radial growth varied with growing‐season climate. We reconstructed post‐fire regeneration and radial growth rates ofPinus ponderosaandPseudotsuga menziesiiat 33 sites that burned between 1992 and 2007, by aging seedlings at the root–shoot boundary. We also measured radial growth in adult trees from 12 additional sites that burned between 1900 and 1990. To quantify the relationship between climate and regeneration, we characterized seasonal climate before, during, and after recruitment pulses using superposed epoch analysis. To quantify growth sensitivity to climate, we performed moving regression analysis for each species and for juvenile and adult life stages. Climatic conditions favoring regeneration and tree growth differed between species. Water deficit and temperature were significantly lower than average during recruitment pulses of ponderosa pine, suggesting that germination‐year climate limits regeneration. Growing degree days were significantly higher than average during years with Douglas‐fir recruitment pulses, but water deficit was significantly lower one year following pulses, suggesting moisture sensitivity in two‐year‐old seedlings. Growth was also sensitive to water deficit, but effects varied between life stages, species, and through time, with juvenile ponderosa pine growth more sensitive to climate than adult growth and juvenile Douglas‐fir growth. Increasing water deficit corresponded with reduced adult growth of both species. Increases in maximum temperature and water deficit corresponded with increases in juvenile growth of both species in the early 20th century but strong reductions in growth for juvenile ponderosa pine in recent decades. Changing sensitivity of growth to climate suggests that increased temperature and water deficit may be pushing these species toward the edge of their climatic tolerances. Our study demonstrates increased vulnerability of dry mixed‐conifer forests to post‐fire regeneration failures and decreased growth as temperatures and drought increase. Shifts toward unfavorable conditions for regeneration and juvenile growth may alter the composition and resilience of low‐elevation forests to future climate and fire activity.

    more » « less
  2. Abstract

    Understanding potential limitations to tree regeneration is essential as rates of tree mortality increase in response to direct (extreme drought) and indirect (bark beetle outbreaks, wildfire) effects of a warming climate. Seed availability is increasingly recognized as an important limitation for tree regeneration. High variability in seed cone production is a trait common among many northern temperate conifers, but few studies examine the determinants of individual tree cone production and how they vary with stand structure. In subalpine forests in the southern Rocky Mountains, USA, we monitored >1600Picea engelmannii(Engelmann spruce) andAbies lasiocarpa(subalpine fir) trees for cone presence (an indicator of reproductive maturity) and a subset of those trees for cone abundance (an indicator of seed production) from 2016 to 2018. We constructed mixed models to test how individual tree cone presence and cone abundance were affected by tree size and age as well as forest attributes at the neighborhood‐ and stand‐scales. The probability of cone presence and cone abundance increased with tree size and age forA. lasiocarpaandP. engelmannii. The youngest ages of trees with cones present were more than 100 yr later for individuals in high basal area (BA) stands (>65 m2/ha) relative to low BA stands (<25 m2/ha).P. engelmanniiproduced many more cones thanA. lasiocarpaat similar sizes, especially in young, low BA stands. Our findings reveal how differences in tree sizes and stand structures typically associated with time since last disturbance can affect seed production patterns for decades to well over a century. The consistent regional pattern of earlier and more abundant postfire establishment ofP. engelmannniivs. the delayed postfire establishment byA. lasiocarpamay be partially explained by species’ differences in cone abundance by stand structure. The increasing loss of large, dominant cone‐producing trees will significantly reduce seed production to support future tree regeneration and maintain forest cover. However, seed availability and resilience following disturbances may be less limiting than expected for species likeP. engelmanniithat have the capacity to produce more cones in open‐canopy forests, such as recently disturbed areas.

    more » « less
  3. Abstract Aim

    Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is a catalyst for change, investigation of post‐fire vegetation response is critical to understanding the potential for future conversions from forest to non‐forest vegetation types. We characterized the influences of climate and terrain on post‐fire tree regeneration and assessed how these biophysical factors might shape future vulnerability to wildfire‐driven forest conversion.


    Montane forests, Rocky Mountains, USA.

    Time period


    Taxa studied

    Pinus ponderosa;Pseudotsuga menziesii.


    We developed a database of dendrochronological samples (n = 717) and plots (n = 1,301) in post‐fire environments spanning a range of topoclimatic settings. We then used statistical models to predict annual post‐fire seedling establishment suitability and total post‐fire seedling abundance from a suite of biophysical correlates. Finally, we reconstructed recent trends in post‐fire recovery and projected future dynamics using three general circulation models (GCMs) under moderate and extreme CO2emission scenarios.


    Though growing season (April–September) precipitation during the recent period (1981–2015) was positively associated with suitability for post‐fire tree seedling establishment, future (2021–2099) trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), which is indicative of warm, dry conditions, was negatively associated with post‐fire seedling abundance during the recent period and was projected to increase throughout the southern Rocky Mountains in the future. Our findings suggest that future increases in CWD and an increased frequency of extreme drought years will substantially reduce post‐fire seedling densities.

    Main conclusions

    This study highlights the key roles of warming and drying in declining forest resilience to wildfire. Moisture stress, driven by macroclimate and topographic setting, will interact with wildfire activity to shape future vegetation patterns throughout the southern Rocky Mountains, USA.

    more » « less
  4. Abstract

    Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.

    We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.

    We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.

    We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.

    Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.

    more » « less
  5. Abstract

    Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.

    more » « less