skip to main content


Title: Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction
Abstract

Deep learning has emerged as a revolutionary technology for protein residue‐residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning‐based contact predictions have been achieved since then. However, little effort has been put into interpreting the black‐box deep learning methods. Algorithms that can interpret the relationship between predicted contact maps and the internal mechanism of the deep learning architectures are needed to explore the essential components of contact inference and improve their explainability. In this study, we present an attention‐based convolutional neural network for protein contact prediction, which consists of two attention mechanism‐based modules: sequence attention and regional attention. Our benchmark results on the CASP13 free‐modeling targets demonstrate that the two attention modules added on top of existing typical deep learning models exhibit a complementary effect that contributes to prediction improvements. More importantly, the inclusion of the attention mechanism provides interpretable patterns that contain useful insights into the key fold‐determining residues in proteins. We expect the attention‐based model can provide a reliable and practically interpretable technique that helps break the current bottlenecks in explaining deep neural networks for contact prediction. The source code of our method is available athttps://github.com/jianlin-cheng/InterpretContactMap.

 
more » « less
Award ID(s):
1763246 1759934
NSF-PAR ID:
10452735
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
89
Issue:
6
ISSN:
0887-3585
Page Range / eLocation ID:
p. 697-707
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Substantial progresses in protein structure prediction have been made by utilizing deep‐learning and residue‐residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning‐based protein inter‐residue distance predictor to improve template‐free (ab initio) tertiary structure prediction, (b) an enhanced template‐based tertiary structure prediction method, and (c) distance‐based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter‐domain structure prediction. The results demonstrate that the template‐free modeling based on deep learning and residue‐residue distance prediction can predict the correct topology for almost all template‐based modeling targets and a majority of hard targets (template‐free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template‐free modeling performs better than the template‐based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template‐free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available athttps://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3andhttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.

     
    more » « less
  2. Abstract

    Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small‐angle X‐ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input‐Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS‐based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain‐domain assembly. The source code and tool packages are available athttps://github.com/jianlin-cheng/SAXSDom.

     
    more » « less
  3. Abstract Background Estimation of the accuracy (quality) of protein structural models is important for both prediction and use of protein structural models. Deep learning methods have been used to integrate protein structure features to predict the quality of protein models. Inter-residue distances are key information for predicting protein’s tertiary structures and therefore have good potentials to predict the quality of protein structural models. However, few methods have been developed to fully take advantage of predicted inter-residue distance maps to estimate the accuracy of a single protein structural model. Result We developed an attentive 2D convolutional neural network (CNN) with channel-wise attention to take only a raw difference map between the inter-residue distance map calculated from a single protein model and the distance map predicted from the protein sequence as input to predict the quality of the model. The network comprises multiple convolutional layers, batch normalization layers, dense layers, and Squeeze-and-Excitation blocks with attention to automatically extract features relevant to protein model quality from the raw input without using any expert-curated features. We evaluated DISTEMA’s capability of selecting the best models for CASP13 targets in terms of ranking loss of GDT-TS score. The ranking loss of DISTEMA is 0.079, lower than several state-of-the-art single-model quality assessment methods. Conclusion This work demonstrates that using raw inter-residue distance information with deep learning can predict the quality of protein structural models reasonably well. DISTEMA is freely at https://github.com/jianlin-cheng/DISTEMA 
    more » « less
  4. Abstract

    Accurate prediction of protein secondary structure (alpha‐helix, beta‐strand and coil) is a crucial step for protein inter‐residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network‐based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one‐dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3‐state and 8‐state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state‐of‐art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at:https://github.com/multicom-toolbox/DNSS2.

     
    more » « less
  5. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM. 
    more » « less