skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross species multi‐omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants
Summary Boron toxicity is a world‐wide problem for crops, yet we have a limited understanding of the genetic responses and adaptive mechanisms to this stress in plants.We employed a cross‐species comparison between boron stress‐sensitiveArabidopsis thalianaand its boron stress‐tolerant extremophyte relativeSchrenkiella parvula, and a multi‐omics approach integrating genomics, transcriptomics, metabolomics and ionomics to assess plant responses and adaptations to boron stress.Schrenkiella parvulamaintains lower concentrations of total boron and free boric acid than Arabidopsis when grown with excess boron.Schrenkiella parvulaexcludes excess boron more efficiently than Arabidopsis, which we propose is partly driven by SpBOR5, a boron transporter that we functionally characterize in this study. Both species use cell walls as a partial sink for excess boron. When accumulated in the cytoplasm, excess boron appears to interrupt RNA metabolism. The extremophyteS. parvulafacilitates critical cellular processes while maintaining the pool of ribose‐containing compounds that can bind with boric acid.TheS. parvulatranscriptome is pre‐adapted to boron toxicity. It exhibits substantial overlaps with the Arabidopsis boron‐stress responsive transcriptome. Cell wall sequestration and increases in global transcript levels under excess boron conditions emerge as key mechanisms for sustaining plant growth under boron toxicity.  more » « less
Award ID(s):
1923589 1616827
PAR ID:
10452771
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
230
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1985-2000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High potassium (K) in the growth medium induces salinity stress in plants. However, the molecular mechanisms underlying plant responses to K-induced salt stress are virtually unknown. We examined Arabidopsis (Arabidopsis thaliana) and its extremophyte relative Schrenkiella parvula using a comparative multiomics approach to identify cellular processes affected by excess K and understand which deterministic regulatory pathways are active to avoid tissue damages while sustaining growth. Arabidopsis showed limited capacity to curb excess K accumulation and prevent nutrient depletion, contrasting to S. parvula which could limit excess K accumulation without restricting nutrient uptake. A targeted transcriptomic response in S. parvula promoted nitrogen uptake along with other key nutrients followed by uninterrupted N assimilation into primary metabolites during excess K-stress. This resulted in larger antioxidant and osmolyte pools and corresponded with sustained growth in S. parvula. Antithetically, Arabidopsis showed increased reactive oxygen species levels, reduced photosynthesis, and transcriptional responses indicative of a poor balance between stress signaling, subsequently leading to growth limitations. Our results indicate that the ability to regulate independent nutrient uptake and a coordinated transcriptomic response to avoid nonspecific stress signaling are two main deterministic steps toward building stress resilience to excess K+-induced salt stress. 
    more » « less
  2. Alternative splicing extends the coding potential of genomes by creating multiple isoforms from one gene. Isoforms can render transcript specificity and diversity to initiate multiple responses required during transcriptome adjustments in stressed environments. Although the prevalence of alternative splicing is widely recognized, how diverse isoforms facilitate stress adaptation in plants that thrive in extreme environments are unexplored. Here we examine how an extremophyte model, Schrenkiella parvula, coordinates alternative splicing in response to high salinity compared to a salt-stress sensitive model, Arabidopsis thaliana. We use Iso-Seq to generate full length reference transcripts and RNA-seq to quantify differential isoform usage in response to salinity changes. We find that single-copy orthologs where S. parvula has a higher number of isoforms than A. thaliana as well as S. parvula genes observed and predicted using machine learning to have multiple isoforms are enriched in stress associated functions. Genes that showed differential isoform usage were largely mutually exclusive from genes that were differentially expressed in response to salt. S. parvula transcriptomes maintained specificity in isoform usage assessed via a measure of expression disorderdness during transcriptome reprogramming under salt. Our study adds a novel resource and insight to study plant stress tolerance evolved in extreme environments. 
    more » « less
  3. Summary Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat‐tolerant Brassicaceae speciesAnastatica hierochunticais an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts.We generated anA. hierochunticareference transcriptome and identified extremophyte adaptations by comparingArabidopsis thalianaandA. hierochunticatranscriptome responses to heat, and detecting positively selected genes inA. hierochuntica.The two species exhibit similar transcriptome adjustment in response to heat and theA. hierochunticatranscriptome does not exist in a constitutive heat ‘stress‐ready’ state. Furthermore, theA. hierochunticaglobal transcriptome as well as heat‐responsive orthologs, display a lower basal and higher heat‐induced expression than inA. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV‐B induced DNA repair while those unique toA. hierochunticaare consistent with its photoperiod‐insensitive, early‐flowering phenotype.We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle. 
    more » « less
  4. Extremophytes are naturally selected to survive environmental stresses, but scarcity of genetic resources for them developed with spatiotemporal resolution limit their use in stress biology. Schrenkiella parvula is one of the leading extremophyte models with initial molecular genomic resources developed to study its tolerance mechanisms to high salinity. Here we present a transcriptome atlas for S. parvula with subsequent analyses to highlight its diverse gene expression networks associated with salt responses. We included spatiotemporal expression profiles, expression specificity of each gene, and co-expression and functional gene networks representing 115 transcriptomes sequenced from 35 tissue and developmental stages examining their responses before and after 27 salt treatments in our current study. The highest number of tissue-preferentially expressed genes were found in seeds and siliques while genes in seedlings showed the broadest expression profiles among developmental stages. Seedlings had the highest magnitude of overall transcriptomic responses to salinity compared to mature tissues and developmental stages. Differentially expressed genes in response to salt were largely mutually exclusive but shared common stress response pathways spanning across tissues and developmental stages. Our foundational dataset created for S. parvula representing a stress-adapted wild plant lays the groundwork for future functional, comparative, and evolutionary studies using extremophytes aiming to uncover novel stress tolerant mechanisms. 
    more » « less
  5. SUMMARY Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress‐adapted lifestyle are unknown along with trade‐offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress‐resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root‐shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt‐induced early flowering, resulting in viable seeds. Self‐fertilization in salt‐induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle ofS. parvula. 
    more » « less