Many modern sea ice models used in global climate models represent the subgrid‐scale heterogeneity in sea ice thickness with an ice thickness distribution (ITD), which improves model realism by representing the significant impact of the high spatial heterogeneity of sea ice thickness on thermodynamic and dynamic processes. Most models default to five thickness categories. However, little has been done to explore the effects of the resolution of this distribution (number of categories) on sea‐ice feedbacks in a coupled model framework and resulting representation of the sea ice mean state. Here, we explore this using sensitivity experiments in CESM2 with the standard 5 ice thickness categories and 15 ice thickness categories. Increasing the resolution of the ITD in a run with preindustrial climate forcing results in substantially thicker Arctic sea ice year‐round. Analyses show that this is a result of the ITD influence on ice strength. With 15 ITD categories, weaker ice occurs for the same average thickness, resulting in a higher fraction of ridged sea ice. In contrast, the higher resolution of thin ice categories results in enhanced heat conduction and bottom growth and leads to only somewhat increased winter Antarctic sea ice volume. The spatial resolution of the ICESat‐2 satellite mission provides a new opportunity to compare model outputs with observations of seasonal evolution of the ITD in the Arctic (ICESat‐2; 2018–2021). Comparisons highlight significant differences from the ITD modeled with both runs over this period, likely pointing to underlying issues contributing to the representation of average thickness.
An Arctic sea ice‐ocean model is run with three uniform horizontal resolutions (6, 4, and 2 km) and identical sea ice and ocean model parameterizations, including an isotropic viscous‐plastic sea ice rheology, a mechanical ice strength parameterization, and an ice ridging parameterization. Driven by the same atmospheric forcing, the three model versions all produce similar spatial patterns and temporal variations of ice thickness and motion fields, resulting in almost identical magnitude and seasonal evolution of total ice volume and mean ice concentration, ice speed, and fractions of ice of various thickness categories over the Arctic Ocean. Increasing model resolution from 6 to 2 km does not significantly improve model performance when compared to NASA IceBridge ice thickness observations. This suggests that the large‐scale sea ice properties of the model are insensitive to varying high resolutions within the multifloe scale (2–10 km), and it may be unnecessary to adjust model parameters constantly with increasingly high resolutions. This is also true with models within the aggregate scale (10–75 km), indicating that model parameters used at coarse resolution may be used at high or multiscale resolution. However, even though the three versions all yield similar mean state of sea ice, they differ in representing anisotropic properties of sea ice. While they produce a basic pattern of major sea ice leads similar to satellite observations, their leads are distributed differently in space and time. Without changing model parameters and sea ice spatiotemporal variability, the 2‐km resolution model tends to capture more leads than the other two models.
more » « less- NSF-PAR ID:
- 10452793
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 126
- Issue:
- 1
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract. Free-drift estimates of sea ice motion are necessary to produce a seamless observational record combining buoy and satellite-derived sea ice motionvectors. We develop a new parameterization for the free drift of sea ice based on wind forcing, wind turning angle, sea ice state variables(thickness and concentration), and estimates of the ocean currents. Given the fact that the spatial distribution of the wind–ice–ocean transfercoefficient has a similar structure to that of the spatial distribution of sea ice thickness, we take the standard free-drift equation and introducea wind–ice–ocean transfer coefficient that scales linearly with ice thickness. Results show a mean bias error of −0.5 cm s−1(low-speed bias) and a root-mean-square error of 5.1 cm s−1, considering daily buoy drift data as truth. This represents a 35 %reduction of the error on drift speed compared to the free-drift estimates used in the Polar Pathfinder dataset (Tschudi et al., 2019b). Thethickness-dependent transfer coefficient provides an improved seasonality and long-term trend of the sea ice drift speed, with a minimum (maximum)drift speed in May (October), compared to July (January) for the constant transfer coefficient parameterizations which simply follow the peak inmean surface wind stresses. Over the 1979–2019 period, the trend in sea ice drift in this new model is +0.45 cm s−1 per decadecompared with +0.39 cm s−1 per decade from the buoy observations, whereas there is essentially no trend in a free-driftparameterization with a constant transfer coefficient (−0.09 cm s−1 per decade) or the Polar Pathfinder free-drift input data(−0.01 cm s−1 per decade). The optimal wind turning angle obtained from a least-squares fitting is 25∘, resulting in a meanerror and a root-mean-square error of +3 and 42∘ on the direction of the drift, respectively. The ocean current estimates obtained from theminimization procedure resolve key large-scale features such as the Beaufort Gyre and Transpolar Drift Stream and are in good agreement with oceanstate estimates from the ECCO, GLORYS, and PIOMAS ice–ocean reanalyses, as well as geostrophic currents from dynamical ocean topography, with aroot-mean-square difference of 2.4, 2.9, 2.6, and 3.8 cm s−1, respectively. Finally, a repeat of the analysis on two sub-sections of thetime series (pre- and post-2000) clearly shows the acceleration of the Beaufort Gyre (particularly along the Alaskan coastline) and an expansion ofthe gyre in the post-2000s, concurrent with a thinning of the sea ice cover and the observed acceleration of the ice drift speed and oceancurrents. This new dataset is publicly available for complementing merged observation-based sea ice drift datasets that include satellite and buoydrift records.more » « less
-
Abstract We document the configuration and emergent simulation features from the Geophysical Fluid Dynamics Laboratory (GFDL) OM4.0 ocean/sea ice model. OM4 serves as the ocean/sea ice component for the GFDL climate and Earth system models. It is also used for climate science research and is contributing to the Coupled Model Intercomparison Project version 6 Ocean Model Intercomparison Project. The ocean component of OM4 uses version 6 of the Modular Ocean Model and the sea ice component uses version 2 of the Sea Ice Simulator, which have identical horizontal grid layouts (Arakawa C‐grid). We follow the Coordinated Ocean‐sea ice Reference Experiments protocol to assess simulation quality across a broad suite of climate‐relevant features. We present results from two versions differing by horizontal grid spacing and physical parameterizations: OM4p5 has nominal 0.5° spacing and includes mesoscale eddy parameterizations and OM4p25 has nominal 0.25° spacing with no mesoscale eddy parameterization. Modular Ocean Model version 6 makes use of a vertical Lagrangian‐remap algorithm that enables general vertical coordinates. We show that use of a hybrid depth‐isopycnal coordinate reduces the middepth ocean warming drift commonly found in pure
z *vertical coordinate ocean models. To test the need for the mesoscale eddy parameterization used in OM4p5, we examine the results from a simulation that removes the eddy parameterization. The water mass structure and model drift are physically degraded relative to OM4p5, thus supporting the key role for a mesoscale closure at this resolution. -
Abstract. In sea-ice-covered areas, the sea ice floe size distribution (FSD) plays an important role in many processes affecting the coupled sea–ice–ocean–atmosphere system. Observations of the FSD are sparse – traditionally taken via a painstaking analysis of ice surface photography – and the seasonal and inter-annual evolution of floe size regionally and globally is largely unknown. Frequently, measured FSDs are assessed using a single number, the scaling exponent of the closest power-law fit to the observed floe size data, although in the absence of adequate datasets there have been limited tests of this “power-law hypothesis”. Here we derive and explain a mathematical technique for deriving statistics of the sea ice FSD from polar-orbiting altimeters, satellites with sub-daily return times to polar regions with high along-track resolutions. Applied to the CryoSat-2 radar altimetric record, covering the period from 2010 to 2018, and incorporating 11 million individual floe samples, we produce the first pan-Arctic climatology and seasonal cycle of sea ice floe size statistics. We then perform the first pan-Arctic test of the power-law hypothesis, finding limited support in the range of floe sizes typically analyzed in photographic observational studies. We compare the seasonal variability in observed floe size to fully coupled climate model simulations including a prognostic floe size and thickness distribution and coupled wave model, finding good agreement in regions where modeled ocean surface waves cause sea ice fracture.more » « less
-
Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC and the Distributed Network (<50 km) were negligible in fall and only 0.2 m in late winter, but the relative abundance of thin and thick ice varied. One unexpected outcome was the large dynamic thickening in a regime where divergence prevailed on average in the western Nansen Basin in spring. We suggest that the large dynamic thickening was due to the mobile, unconsolidated sea ice pack and periodic, sub-daily motion. We demonstrate that this Lagrangian sea ice thickness data set is well suited for validating the existing redistribution theory in sea ice models. Our comprehensive description of seasonal changes of the sea ice thickness distribution is valuable for interpreting MOSAiC time series across disciplines and can be used as a reference to advance sea ice thickness modeling.more » « less