Abstract High‐altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high‐altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2evasion from stream surfaces was up to an order of magnitude greater than soil CO2efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2and carbon availability) in the lower reaches of the stream. A 4‐m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250‐m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high‐altitude, tropical, headwater catchments. 
                        more » 
                        « less   
                    
                            
                            Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO 2
                        
                    
    
            Abstract Lakes are central components of the inland water system distinct from, yet inextricably connected to, river networks. Currently, existing network‐scale biogeochemistry research, although robust, typically treats each of these components separately or reductively. Here, we incorporate lake morphometry into a fully connected stream/lake network for the Connecticut River watershed and model potential evasion of terrestrially sourced headwater CO2as transported through the network, ignoring in‐stream production. We found that approximately 25%–30% of total potential soil CO2evasion occurs in lakes, and percent evasion is inversely related to streamflow. A lake's ability to evade CO2is controlled by residence time and size: most lakes with residence time over 7 days or surface area greater than 0.004 km2evade functionally all terrestrial CO2entering from upstream, precluding further downstream transport. We conclude that lakes are important for soil CO2degassing and that this coupled river/lake approach is promising for CO2studies henceforth. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1840243
- PAR ID:
- 10452802
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Lake water residence time and depth are known to be strong predictors of phosphorus (P) retention. However, there is substantial variation in P retention among lakes with the same depth and residence time. One potential explanatory factor for this variation is differences in freshwater connectivity of lakes (i.e., the type and amount of freshwater connections to a lake), which can influence watershed P trapping or the particulate load fraction of P delivered to lakes via stream connections. To examine the relationship between P retention and connectivity, we quantified several different measures of connectivity including those that reflect downstream transport of material (sediment, water, and nutrients) within lake‐stream networks (lake‐stream‐based metrics) as well as those that reflect transport of material from hillslope and riparian areas adjacent to watershed stream networks (stream‐based metrics). Because it is not always clear what spatial extent is appropriate for determining functional differences in connectivity among lakes, we compared connectivity metrics at two important spatial extents: the lake subwatershed extent and the lake watershed extent. We found that variation in P retention among lakes was more strongly associated with connectivity metrics measured at the broader lake watershed extent rather than metrics measured at the finer lake subwatershed extent. Our results suggest that both connectivity between lakes and streams as well as connectivity of lakes and their terrestrial watersheds influence P retention.more » « less
- 
            Abstract The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2or CH4to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,90014C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil14C‐CO2emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2emissions derived from older sources following recent thaw. The age of CO2and CH4emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future14C studies in the permafrost region.more » « less
- 
            Abstract Descriptions of river network topology do not include lakes/reservoirs that are connected to rivers. We describe the properties and scaling patterns of river network topology across the contiguous United States: how lake/reservoir abundance, median lake/reservoir size, and median lake/reservoir spacing change with river size. Typically, lake/reservoir abundance decreases, median lake/reservoir size increases, but median lake/reservoir spacing is uniform across river size. There is a characteristic lake/reservoir size of 0.01–0.05 km2and a characteristic lake/reservoir spacing of 1–5 km that shifts to 27–61 km in larger rivers. Climate explains more of the variance in river network topology than both glacial history and constructed reservoirs. Our results provide conceptual models for building river network topologies to assess how lake/reservoir abundance, size, and spacing effect the transport, storage, and cycling of water, materials, and organisms across networks.more » « less
- 
            Abstract Inland waters are an important component of the global carbon budget. However, our ability to predict carbon fluxes from stream systems remains uncertain, aspCO2varies within streams at scales of 1–100 m. This makes direct monitoring of large‐scale CO2fluxes impractical. We incorporate CO2input and output fluxes into a stream network advection‐reaction model, representing the first process‐based representation of stream CO2dynamics at watershed scales. This model includes groundwater (GW) CO2inputs, water column (WC), benthic hyporheic zone (BHZ) respiration, downstream advection, and atmospheric exchange. We evaluate this model against existing statistical methods including upscaling and multiple linear regressions through comparisons to high‐resolution streampCO2data collected across the East River Watershed in the Colorado Rocky Mountains (USA). The stream network model accurately captures GW, evasion, and respiration‐drivenpCO2variability and significantly outperforms multiple linear regressions for predictingpCO2. Further, the model provides estimates of CO2contributions from internal versus external sources suggesting that streams transition from GW‐ to BHZ‐dominated sources between 3rd and 4th Strahler orders, with GW, BHZ, and WC accounting for 49.3%, 50.6%, and 0.1% of CO2fluxes from the watershed, respectively. Lastly, stream network model atmospheric CO2fluxes are 4‐12x times smaller than upscaling technique predictions, largely due to relationships between streampCO2and gas exchange velocities. Taken together, this stream network model improves our ability to predict stream CO2dynamics and efflux. Furthermore, future applications to regional and global scales may result in a significant downward revision of global flux estimates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
