skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Observations Show That Wind Farms Substantially Modify the Atmospheric Boundary Layer Thermal Stratification Transition in the Early Evening
Abstract

Single wind turbines and large wind farms modify local scales of atmospheric boundary layer (ABL) turbulence through different mechanisms dependent on location within the wind farm. These changes in turbulence scales would most likely have notable influence on surface fluxes and microclimate during the afternoon and early evening stability transition. Profiles of Richardson number and shear and buoyancy from 1‐Hz tall tower measurements in and near a wind farm in an agricultural landscape were used to quantify departures in stability characteristics during the fallow seasons. A single turbine wake decoupled turbulent connection between the surface and above the wind turbine, changed the onset of near‐surface stabilization (earlier by a few hours), and lengthened the transition period (by up to an hour) within the rotor wake. Deep within a large wind farm, turbulence recovered to near‐ambient conditions and departures of the transition onset and duration were within 30 min of the natural ABL.

 
more » « less
NSF-PAR ID:
10452842
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Iowa Atmospheric Observatory was established to better understand the unique microclimate characteristics of a wind farm. The facility consists of a pair of 120-m towers identically instrumented to observe basic landscape–atmosphere interactions in a highly managed agricultural landscape. The towers, one within and one outside of a utility-scale low-density-array wind farm, are equipped to measure vertical profiles of temperature, wind, moisture, and pressure and can host specialized sensors for a wide range of environmental conditions. Tower measurements during the 2016 growing season demonstrate the ability to distinguish microclimate differences created by single or multiple turbines from natural conditions over homogeneous agricultural fields. Microclimate differences between the two towers are reported as contrasts in normalized wind speed, normalized turbulence intensity, potential temperature, and water vapor mixing ratio. Differences are analyzed according to conditions of no wind farm influence (i.e., no wake) versus wind farm influence (i.e., waked flow) with distance downwind from a single wind turbine or a large group of turbines. Differences are also determined for more specific atmospheric conditions according to thermal stratification. Results demonstrate agreement with most, but not all, currently available numerical flow-field simulations of large wind farm arrays and of individual turbines. In particular, the well-documented higher nighttime surface temperature in wind farms is examined in vertical profiles that confirm this effect to be a “suppression of cooling” rather than a warming process. A summary is provided of how the wind farm boundary layer differs from the natural boundary layer derived from concurrent measurements over the summer of 2016.

     
    more » « less
  2. Light detection and ranging (LiDAR) measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a breadth of atmospheric stability regimes and rotor thrust coefficients. The LiDAR measurements are clustered through the k-means algorithm, which enables identifying the most representative realizations of wind turbine wakes while avoiding the imposition of thresholds for the various wind and turbine parameters. Considering the large number of LiDAR samples collected to probe the wake velocity field, the dimensionality of the experimental dataset is reduced by projecting the LiDAR data on an intelligently truncated basis obtained with the proper orthogonal decomposition (POD). The coefficients of only five physics-informed POD modes are then injected in the k-means algorithm for clustering the LiDAR dataset. The analysis of the clustered LiDAR data and the associated supervisory control and data acquisition and meteorological data enables the study of the variability of the wake velocity deficit, wake extent, and wake-added turbulence intensity for different thrust coefficients of the turbine rotor and regimes of atmospheric stability. Furthermore, the cluster analysis of the LiDAR data allows for the identification of systematic off-design operations with a certain yaw misalignment of the turbine rotor with the mean wind direction. 
    more » « less
  3. The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.

     
    more » « less
  4. Abstract

    The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models.

     
    more » « less
  5. Abstract

    One‐way nested mesoscale to microscale simulations of an onshore wind farm have been performed nesting the Weather Research and Forecasting (WRF) model and our in‐house high‐resolution large‐eddy simulation code (UTD‐WF). Each simulation contains five nested WRF domains, with the largest domain spanning the north Texas Panhandle region with a 4 km resolution, while the highest resolution (50 m) nest simulates microscale wind fluctuations and turbine wakes within a single wind farm. The finest WRF domain in turn drives the UTD‐WF LES higher‐resolution domain for a subset of six turbines at a resolution of ∼5 m. The wind speed, direction, and boundary layer profiles from WRF are compared against measurements obtained with a met‐tower and a scanning Doppler wind LiDAR located within the wind farm. Additionally, power production obtained from WRF and UTD‐WF are assessed against supervisory control and data acquisition (SCADA) system data. Numerical results agree well with the experimental measurements of the wind speed, direction, and power production of the turbines. UTD‐WF high‐resolution domain improves significantly the agreement of the turbulence intensity at the turbines location compared with that of WRF. Velocity spectra have been computed to assess how the nesting allows resolving a wide range of scales at a reasonable computational cost. A domain sensitivity analysis has been performed. Velocity spectra indicate that placing the inlet too close to the first row of turbines results in an unrealistic peak of energy at the rotational frequency of the turbines. Spectra of the power production of a single turbine and of the cumulative power of the array have been compared with analytical models.

     
    more » « less