skip to main content


Title: An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome
Abstract

Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and biotic interactions shape the long‐term fate of a deciduous broadleaf forest type that replaces black spruce after severe wildfires in interior Alaska, USA.

We simulated postfire deciduous forest that replaced black spruce after severe fires in 2004 for tens to hundreds of years under different climate scenarios (contemporary, mid 21st century, late 21st century), fire return intervals (11–250 years), distances to seed source (50–1,000 m) and browsing intensities (background, moderate, chronic). We identified combinations of conditions where deciduous forest remained the dominant vegetation type and combinations where it returned to black spruce forest, transitioned to mixed forest (where deciduous species and black spruce co‐dominate) or converted to nonforest.

Deciduous forest persisted in 86% of simulations and was most resilient if fire return intervals were short (≤50 years). When transitions to another vegetation type occurred, mixed forest was most common, particularly when fire return intervals were long (>50 years) and the nearest seed source was 500 m or farther. Moderate and chronic browsing also reduced deciduous sapling growth and survival, helping black spruce compete if fire return intervals were long and seed source was distant. Dry soils occasionally caused conversion to nonforest following short‐interval fire when simulations were forced with a late 21st‐century climate scenario that projects warming and increased vapor pressure deficit. Return to black spruce forest almost never occurred.

Synthesis. Conversion from black spruce to deciduous forest is already underway at regional scales in interior Alaska, and similar transitions have been widely observed throughout the North American boreal biome. We show that this boreal deciduous forest type is likely a resilient alternate state that will persist through the 21st century, which is important, because future vegetation outcomes will shape biophysical feedbacks to regional climate and influence subsequent disturbance regimes.

 
more » « less
NSF-PAR ID:
10452879
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
1
ISSN:
0022-0477
Page Range / eLocation ID:
p. 85-98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.

     
    more » « less
  2. The future of boreal forests in Alaska, United States, will likely consist of more deciduous-dominant stands because larger and more severe fires facilitate the establishment of deciduous species such as trembling aspen (Populus tremuloides Michx.) and Alaska birch (Betula neoalaskana Sarg.). Whether stands transition to a deciduous-dominant system or mixed-wood forest or return to being dominated by black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) depends on the capacity of regenerating black spruce to grow and produce seed before the next fire. We hypothesized that winter herbivory by snowshoe hares (Lepus americanus Erxleben, 1777) can suppress black spruce under deciduous canopies. We addressed this question by measuring changes in spruce height and herbivory across 54 plots in Interior Alaska that burned 8–88 years ago and related these data to plot-level data collected by the Bonanza Creek Long-Term Ecological Research program. Spruce were more likely browsed at deciduous-dominant sites with dense canopies, and this browsing likely reduced their height growth. Although we found more subtle effects of browsing on height at the individual level, browsing was an important variable in a confirmatory path analysis at the plot level. These observations affirm our broader hypothesis of the selectivity of hare browsing, in that snowshoe hares prefer to browse spruce that are taller and faster growing, effectively “leveling” regenerating seedlings and saplings so that browsed and unbrowsed individuals within a site are the same height. 
    more » « less
  3. Abstract

    Fire frequency is increasing with climate warming in the boreal regions of interior Alaska, with short fire return intervals (< 50 years) becoming more common. Recent studies suggest these “reburns” will reduce the insulating surface organic layer (SOL) and seedbanks, inhibiting black spruce regeneration and increasing deciduous cover. These changes are projected to amplify soil warming, increasing mineral soil organic carbon (SOC) decomposition rates, and impair re-establishment of understorey vegetation and the SOL. We examined how reburns changed soil temperature, heterotrophic soil respiration (RH), and understorey gross primary production (GPP), and related these to shifts in vegetation composition and SOL depths. Two distinct burn complexes previously covered by spruce were measured; both included areas burned 1x, 2x, and 3x over 60 years and mature (≈ 90 year old) spruce forests underlain by permafrost. A 2.7 °C increase in annual near-surface soil temperatures from 1x to 3x burns was correlated with a decrease in SOL depths and a 1.9 Mg C ha−1increase in annual RH efflux. However, near-surface soil warming accounted for ≤ 23% of higher RH efflux; increases in deciduous overstorey vegetation and root biomass with reburning better correlated with RH than soil temperature. Reburning also warmed deeper soils and reduced the biomass and GPP of understory plants, lessening their potential to offset elevated RH and contribute to SOL development. This suggests that reburning led to losses of mineral SOC previously stored in permafrost due to warming soils and changes in vegetation composition, illustrating how burn frequency creates pathways for accelerated regional C loss.

     
    more » « less
  4. Conifer forests historically have been resilient to wildfires in part due to thick organic soil layers that regulate combustion and post-fire moisture and vegetation change. However, recent shifts in fire activity in western North America may be overwhelming these resilience mechanisms with potential impacts for energy and carbon exchange. Here, we quantify the long-term recovery of the organic soil layer and its carbon pools across 511 forested plots. Our plots span ~ 140,000 km2 across two ecozones of the Northwest Territories, Canada, and allowed us to investigate the impacts of time-after-fire, site moisture class, and dominant canopy type on soil organic layer thickness and associated carbon stocks. Despite thinner soil organic layers in xeric plots immediately after fire, these drier stands supported faster post-fire recovery of the soil organic layer than in mesic plots. Unlike xeric or mesic stands, post-fire soil carbon accumulation rates in hydric plots were negligible despite wetter forested plots having greater soil organic carbon stocks immediately post-fire compared to other stands. While permafrost and high-water tables inhibit combustion and maintain thick organic soils immediately after fire, our results suggest that these wet stands are not recovering their pre-fire carbon stocks on a century timescale. We show that canopy conversion from black spruce to jack pine or deciduous dominance could reduce organic soil carbon stocks by 60–80% depending on stand age. Our two main findings—decreasing organic soil carbon storage with increasing deciduous cover and the lack of post-fire SOL recovery in hydric sites—have implications for the turnover time of carbon stocks in the western boreal forest region and also will impact energy fluxes by controlling albedo and surface soil moisture. 
    more » « less
  5. Abstract

    Increasing temperatures and human activity are likely to reduce fire return intervals in the seasonal tropics. Anticipating how more frequent fires may alter forest community structure and composition requires understanding how fire intensity and species‐specific responses to fires interact to drive fire‐induced mortality for large numbers of species. We developed an analytical framework to estimate unobserved fire intensities and species‐ and size‐specific susceptibility to fire using observed mortality data.

    We used census data from a 50‐ha forest dynamics plot in western Thailand to better understand species and community responses to a fire that burned60% of the plot in 2005. Trees species, size and status (live, dead) were censused just before the fire (2004) and again 5 years later (2009). We jointly estimated a map of relative fire intensity and species‐specific size‐dependent background and fire‐induced mortality. We then calculated the time required for individuals of each species to reach a fire‐safe size threshold (the age at which the fire‐induced mortality probability was <50%). To better understand community‐level responses to fire, we compared results among different species groups (canopy status, forest‐type association).

    Our model‐derived map of fire intensity closely matched the field survey taken in the days after the fire. On average, individuals growing at the 95th percentile growth rate for most species groups required5 years to reach their species’ fire‐safe size threshold, while individuals growing at the median growth rate required17 years (assuming growth <1 cm diameter at breast height was similar to growth >1 cm). However, understorey species associated with the seasonal evergreen forest took 1.8 times longer than average to reach their fire‐safe size threshold, with one species requiring up to 190 years.

    Synthesis.Our approach provided insights into spatial patterning of fire intensity in a seasonal tropical forest and species‐ and size‐specific susceptibility to fire‐induced mortality. Our results suggest increasing fire frequency will have the greatest impact on slow‐growing understorey species of the evergreen forest. In addition, our model accurately predicts the growing dominance of a fast‐growing understorey species,Croton roxburghii;Euphorbiaceae, common to evergreen and deciduous forests that can reach its fire‐safe size threshold in 1.3 years.

     
    more » « less