Analysis of stable carbon and nitrogen isotope values (δ13C and δ15N) of animal tissues can provide important information about diet, physiology, and movements. Interpretation of δ13C and δ15N values, however, is influenced by factors such as sample lipid content, tissue-specific isotope discrimination, and tissue turnover rates, which are typically species- and tissue-specific. In this study, we generated lipid normalization models for δ13C and investigated the effects of chemical lipid extractions on δ13C and δ15N in Pacific walrus (
Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15N) are primarily used to estimate trophic position while carbon isotopes (δ13C) describe habitat associations and feeding pathways. Models of both δ15N and δ13C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15N and δ13C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species,
- PAR ID:
- 10452945
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 3
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Odobenus rosmarus divergens ) muscle, liver, and skin. We also evaluated tissue-specific isotope discrimination in walrus muscle, liver, skin, and bone collagen. Mean δ13Clipid-freeof skin and bone collagen were similar, as were mean δ15N of muscle and liver. All other tissues differed significantly for both isotopes. Differences in δ13Clipid-freeand δ15N among tissues agreed with published estimates of marine mammal tissue-specific isotope discrimination factors, with the exception of skin. The results of this work will allow researchers to gain a clearer understanding of walrus diet and the structure of Arctic food webs, while also making it possible to directly compare the results of contemporary walrus isotope research with those of historic and paleoecological studies. -
Rationale It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acid
δ 15N values.Methods We evaluated the effects of chemical preservatives on bulk tissue
δ 13C andδ 15N and amino acidδ 15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna ( ) and squid (Thunnus albacares ) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Dosidicus gigas andCalanus pacificus , which were preserved in formaldehyde for 24–25 years.Eucalanus californicus Results Tissues in formaldehyde‐ethanol had higher bulk
δ 15N values (+1.4, ; +1.6‰,D. gigas ), higherT. albacares δ 13C values for (+0.5‰), and lowerD. gigas δ 13C values for (−0.8‰) than frozen samples. The bulkT. albacares δ 15N values from copepods were not different those from frozen samples, although theδ 13C values from both species were lower (−1.0‰ for and −2.2‰ forE. californicus ) than those from frozen samples. The mean amino acidC. pacificus δ 15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ 15N values were altered to a larger extent (range: 0.5–4.5‰).Conclusions The effects of preservation on bulk
δ 13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ 15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ 15N values used in ecological studies. The preservation effects on amino acidδ 15N values were also mostly minimal, mirroring bulkδ 15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ 15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation. -
Rationale Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.
Methods We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver of
andSceloporus undulatus that differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.Crotaphytus collaris Results Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.
Conclusions Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.
-
Abstract Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two species
Neogloboquadrina dutertrei andNeogloboquadrina incompta over the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites. -
To examine N-isotope ratios (15N/14N) in tissues and shell organic matrix of bivalves as a proxy for natural and anthropogenic nutrient fluxes in coastal environments,
Pinctada imbricata ,Isognomon alatus , andBrachidontes exustus bivalves were live-collected and analyzed from eight sites in Bocas del Toro, Panama. Sites represent a variety of coastal environments, including more urbanized, uninhabited, riverine, and oceanic sites. Growth under differing environmental conditions is confirmed byδ 18O values, with open ocean Escudo de Veraguas shells yielding the highest averageδ 18O (−1.0‰) value and freshwater endmember Rio Guarumo the lowest (−1.7‰). At all sites there is no single dominant source of organic matter contributing to bivalveδ 15N andδ 13C values. Bivalveδ 15N andδ 13C values likely represent a mixture of mangrove and seagrass N and C, although terrestrial sources cannot be ruled out. Despite hydrographic differences between end-members, we see minimalδ 15N andδ 13C difference between bivalves from the river-influenced Rio Guarumo site and those from the oceanic Escudo de Veraguas site, with no evidence for N from open-ocean phytoplankton in the latter. Populated sites yield relative15N enrichments suggestive of anthropogenic nutrient input, but lowδ 15N values overall make this interpretation equivocal. Lastly,δ 15N values of tissue and shell organic matrix correlate significantly for pterioideansP. imbricata andI. alatus . Thus for these species, N isotope studies of historical and fossil shells should provide records of ecology of past environments.