skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Recent collapse of crop belts and declining diversity of US agriculture since 1840
Abstract

Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county‐level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15‐fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.

 
more » « less
PAR ID:
10452958
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
1
ISSN:
1354-1013
Page Range / eLocation ID:
p. 151-164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023). 
    more » « less
  2. Abstract

    Food security and the agricultural economy are both dependent on the temporal stability of crop yields. To this end, increasing crop diversity has been suggested as a means to stabilize agricultural yields amidst an ongoing decrease in cropping system diversity across the world. Although diversity confers stability in many natural ecosystems, in agricultural systems the relationship between crop diversity and yield stability is not yet well resolved across spatial scales. Here, we leveraged crop area, production, and price data from 1981 to 2020 to assess the relationship between crop diversity and the stability of both economic and caloric yields at the state level within the USA. We found that, after controlling for climatic instability and differences in irrigated area, crop diversity was positively associated with economic yield stability but negatively associated with caloric yield stability. Further, we found that crops with a propensity for increasing economic yield stability but reducing caloric yield stability were often found in the most diverse states. We propose that price responses to changes in production for high-value crops underly the positive relationship between diversity and economic yield stability. In contrast, spatial concentration of calorie-dense crops in low-diversity states contributes to the negative relationship between diversity and caloric yield stability. Our results suggest that the relationship between crop diversity and yield stability is not universal, but instead dependent on the spatial scale in question and the stability metric of interest.

     
    more » « less
  3. Foreign investors have acquired approximately 90 million hectares of land for agriculture over the past two decades. The effects of these investments on local food security remain unknown. While additional cropland and intensified agriculture could potentially increase crop production, preferential targeting of prime agricultural land and transitions toward export-bound crops might affect local access to nutritious foods. We test these hypotheses in a global systematic analysis of the food security implications of existing land concessions. We combine agricultural, remote sensing, and household survey data (available in 11 sub-Saharan African countries) with georeferenced information on 160 land acquisitions in 39 countries. We find that the intended changes in cultivated crop types generally imply transitions toward energy-rich, but nutrient-poor, crops that are predominantly destined for export markets. Specific impacts on food production and access vary substantially across regions. Deals likely have little effect on food security in eastern Europe and Latin America, where they predominantly occur within agricultural areas with current export-oriented crops, and where agriculture would have both expanded and intensified regardless of the land deals. This contrasts with Asia and sub-Saharan Africa, where deals are associated with both an expansion and intensification (in Asia) of crop production. Deals in these regions also shift production away from local staples and coincide with a gradually decreasing dietary diversity among the surveyed households in sub-Saharan Africa. Together, these findings point to a paradox, where land deals can simultaneously increase crop production and threaten local food security.

     
    more » « less
  4. Abstract

    The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices.

     
    more » « less
  5. Abstract

    Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system.

     
    more » « less