skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate From the McMurdo Dry Valleys, Antarctica, 1986–2017: Surface Air Temperature Trends and Redefined Summer Season
Abstract The weather of the McMurdo Dry Valleys, Antarctica, the largest ice‐free region of the Antarctica, has been continuously monitored since 1985 with currently 14 operational meteorological stations distributed throughout the valleys. Because climate is based on a 30‐year record of weather, this is the first study to truly define the contemporary climate of the McMurdo Dry Valleys. Mean air temperature and solar radiation based on all stations were −20°C and 102 W m−2, respectively. Depending on the site location, the mean annual air temperatures on the valleys floors ranged between −15°C and −30°C, and mean annual solar radiation varied between 72 and 122 W m−2. Surface air temperature decreased by 0.7°C per decade from 1986 to 2006 at Lake Hoare station (longest continuous record), after which the record is highly variable with no trend. All stations with sufficiently long records showed similar trend shifts in 2005 ±1 year. Summer is defined as November through February, using a physically based process: up‐valley warming from the coast associated with a change in atmospheric stability.  more » « less
Award ID(s):
1637708
PAR ID:
10453004
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
13
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The ERA5 climate reanalysis dataset plays an important role in applications such as monitoring and modeling climate system changes in polar regions, so the calibration of the reanalysis to ground observations is of great relevance. Here, we compare the 2 m air temperature time series of the ERA5 reanalysis and the near-surface bias-corrected reanalysis to the near-ground air temperature measured at 17 automatic weather stations (AWSs) in the McMurdo Dry Valleys, Antarctica. We find that the reanalysis data have biases that change with the season of the year and do not clearly correlate with elevation. Our results show that future work should rely on secondary observations to calibrate when using the ERA5 reanalysis in polar regions. 
    more » « less
  2. Abstract Record high temperatures were documented in the McMurdo Dry Valleys, Antarctica, on 18 March 2022, exceeding average temperatures for that day by nearly 30°C. Satellite imagery and stream gage measurements indicate that surface wetting coincided with this warming more than 2 months after peak summer thaw and likely exceeded thresholds for rehydration and activation of resident organisms that typically survive the cold and dry conditions of the polar fall in a freeze‐dried state. This weather event is notable in both the timing and magnitude of the warming and wetting when temperatures exceeded 0°C at a time when biological communities and streams have typically entered a persistent frozen state. Such events may be a harbinger of future climate conditions characterized by warmer temperatures and greater thaw in this region of Antarctica, which could influence the distribution, activity, and abundance of sentinel taxa. Here we describe the ecosystem responses to this weather anomaly reporting on meteorological and hydrological measurements across the region and on later biological observations from Canada Stream, one of the most diverse and productive ecosystems within the McMurdo Dry Valleys. 
    more » « less
  3. Abstract Drylands are unique among terrestrial ecosystems in that they have a significant proportion of primary production facilitated by non‐vascular plants such as colonial cyanobacteria, moss, and lichens, i.e., biocrusts, which occur on and in the surface soil. Biocrusts inhabit all continents, including Antarctica, an increasingly dynamic continent on the precipice of change. Here, we describe in‐situ field surveying and sampling, remote sensing, and modeling approaches to assess the habitat suitability of biocrusts in the Lake Fryxell basin of Taylor Valley, Antarctica, which is the main site of the McMurdo Dry Valleys Long‐Term Ecological Research Program. Soils suitable for the development of biocrusts are typically wetter, less alkaline, and less saline compared to unvegetated soils. Using random forest models, we show that gravimetric water content, electrical conductivity, and snow frequency are the top predictors of biocrust presence and biomass. Areas most suitable for the growth of dense biocrusts are soils associated with seasonal snow patches. Using geospatial data to extrapolate our habitat suitability model to the whole basin predicts that biocrusts are present in 2.7 × 105m2and contain 11–72 Mg of aboveground carbon, based on the 90% probability of occurrence. Our study illustrates the synergistic effect of combining field and remote sensing data for understanding the distribution and biomass of biocrusts, a foundational community in the carbon balance of this region. Extreme weather events and changing climate conditions in this region, especially those influencing snow accumulation and persistence, could have significant effects on the future distribution and abundance of biocrusts and therefore soil organic carbon storage in the McMurdo Dry Valleys. 
    more » « less
  4. Abstract. Remote sensing data are a crucial tool for monitoring climatological changes and glacier response in areas inaccessible for in situ measurements. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product provides temperature data for remote glaciated areas where air temperature measurements from weather stations are sparse or absent, such as the St. Elias Mountains (Yukon, Canada). However, MODIS LSTs in the St. Elias Mountains have been found in prior studies to show an offset from available weather station measurements, the source of which is unknown. Here, we show that the MODIS offset likely results from the occurrence of near-surface temperature inversions rather than from the MODIS sensor’s large footprint size or from poorly constrained snow emissivity values used in LST calculations. We find that an offset in remote sensing temperatures is present not only in MODIS LST products but also in Advanced Spaceborne Thermal Emissions Radiometer (ASTER) and Landsat temperature products, both of which have a much smaller footprint (90–120 m) than MODIS (1 km). In all three datasets, the offset was most pronounced in the winter (mean offset >8 ∘C) and least pronounced in the spring and summer (mean offset <2 ∘C). We also find this enhanced seasonal offset in MODIS brightness temperatures, before the incorporation of snow surface emissivity into the LST calculation. Finally, we find the MODIS LST offset to be consistent in magnitude and seasonal distribution with modeled temperature inversions and to be most pronounced under conditions that facilitate near-surface inversions, namely low incoming solar radiation and wind speeds, at study sites Icefield Divide (60.68∘N, 139.78∘ W; 2,603 m a.s.l) and Eclipse Icefield (60.84∘ N, 139.84∘ W; 3017 m a.s.l.). Although these results do not preclude errors in the MODIS sensor or LST algorithm, they demonstrate that efforts to convert MODIS LSTs to an air temperature measurement should focus on understanding near-surface physical processes. In the absence of a conversion from surface to air temperature based on physical principles, we apply a statistical conversion, enabling the use of mean annual MODIS LSTs to qualitatively and quantitatively examine temperatures in the St. Elias Mountains and their relationship to melt and mass balance. 
    more » « less
  5. Abstract Continuous permafrost is present across the McMurdo Dry Valleys of southern Victoria Land, Antarctica. While summer active-layer thaw is common in the low-elevation portions of the Dry Valleys, active layers have not significantly thickened over time. However, in some locations, coastal Antarctic permafrost has begun to warm. Here, based on soil and meteorological measurements from 1993 to 2023, we show that wintertime soil temperatures have increased across multiple sites in the Dry Valleys, at rates exceeding the pace of summer soil warming. Linear warming trends over time are significant (P< 0.05) at six of seven soil monitoring sites. Winter warming is strongly correlated with increased numbers of down-valley wind events (Foehn/katabatics), but it may also be driven by increased incident longwave radiation at some stations (although winter longwave increase is not significant over time). While down-valley wind events increase winter warming, when down-valley wind events are excluded from the record, winter soil warming remains persistent and significant, suggesting that Antarctic soils are experiencing less cold winters over time in response to regional warming. Together, these observations suggest that some Antarctic permafrost may be approaching a transition to discontinuous permafrost in some regions as winter freezing intensity is reduced over time. 
    more » « less