skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: IDTReeS 2020 Competition Data
{"Abstract":["Data provided by the Integrating Data science with Trees and Remote Sensing (IDTReeS) research group for use in the IDTReeS Competition.<\/p>\n\nGeospatial and tabular data to be used in two data science tasks focused on using remote sensing data to quantify the locations, sizes and species identities of millions of trees and on determining how these methods generalize to other forests.<\/p>\n\nVector data are the geographic extents of Individual Tree Crown boundaries that have been identified by researchers in the IDTReeS group. The data were generated primarily by Sarah Graves, Sergio Marconi, and Benjamin Weinstein, with support from Stephanie Bohlman, Ethan White, and members of the IDTReeS group.<\/p>\n\nRemote Sensing and Field data were generated by the National Ecological Observatory Network (NEON, Copyright © 2017 Battelle). Data were selected, downloaded, and packaged by Sergio Marconi. The most recent available data of the following products are provided:<\/p>\n\nNational Ecological Observatory Network. 2020. Data Product DP1.30010.001, High-resolution orthorectified camera imagery. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.<\/p>\n\nNational Ecological Observatory Network. 2020. Data Product DP1.30003.001, Discrete return LiDAR point cloud. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.<\/p>\n\nNational Ecological Observatory Network. 2020. Data Product DP1.10098.001, Woody plant vegetation structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.<\/p>\n\nNational Ecological Observatory Network. 2020. Data Product DP3.30015.001, Ecosystem structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.<\/p>\n\nNEON has the following data policy:<\/p>\n\n\u2018The National Ecological Observatory Network is a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle Memorial Institute. This material is based in part upon work supported by the National Science Foundation through the NEON Program.\u2019<\/p>\n\nTHE NEON DATA PRODUCTS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE NEON DATA PRODUCTS BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE NEON DATA PRODUCTS.<\/p>"],"Other":["This data is supported by the National Science Foundation through grant 1926542 and by the Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative through grant GBMF4563 to E.P. White, and the NSF Dimension of Biodiversity program grant (DEB-1442280) and USDA/NIFA McIntire-Stennis program (FLA-FOR-005470)."]}  more » « less
Award ID(s):
1926542
PAR ID:
10453015
Author(s) / Creator(s):
;
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
4
Subject(s) / Keyword(s):
NEON, ecology, remote sensing, data science, image processing, machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We compiled National Ecological Observatory Network (NEON) datasets related to the initial distributed soil sampling effort and subsetted them (removed samples with missing values for certain variables, and several samples with extreme values) for use in statistical analyses to describe relationships between soil organic carbon (SOC) and metals measured in several soil chemical extractions. The NEON provisional data products we used were DP1.10047.001 and DP1.10008.001, which were subsequently combined by NEON as a single data product DP1.10047.001, “Soil physical and chemical properties, distributed initial characterization”. These datasets were used for the analyses reported in a manuscript by Hall and Thompson (2021) in the Soil Science Society of America Journal. 
    more » « less
  2. Abstract The National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO 2 . EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities. 
    more » « less
  3. Abstract The National Ecological Observatory Network (NEON) provides over 180 distinct data products from 81 sites (47 terrestrial and 34 freshwater aquatic sites) within the United States and Puerto Rico. These data products include both field and remote sensing data collected using standardized protocols and sampling schema, with centralized quality assurance and quality control (QA/QC) provided by NEON staff. Such breadth of data creates opportunities for the research community to extend basic and applied research while also extending the impact and reach of NEON data through the creation of derived data products—higher level data products derived by the user community from NEON data. Derived data products are curated, documented, reproducibly‐generated datasets created by applying various processing steps to one or more lower level data products—including interpolation, extrapolation, integration, statistical analysis, modeling, or transformations. Derived data products directly benefit the research community and increase the impact of NEON data by broadening the size and diversity of the user base, decreasing the time and effort needed for working with NEON data, providing primary research foci through the development via the derivation process, and helping users address multidisciplinary questions. Creating derived data products also promotes personal career advancement to those involved through publications, citations, and future grant proposals. However, the creation of derived data products is a nontrivial task. Here we provide an overview of the process of creating derived data products while outlining the advantages, challenges, and major considerations. 
    more » « less
  4. ### Access Dataset can be accessed and downloaded from the directory via: [http://arcticdata.io/data/10.18739/A2599Z39H](http://arcticdata.io/data/10.18739/A2599Z39H). ### Overview This dataset contains raw sedimentary ancient DNA (sedaDNA) sequence data and associated metadata generated from a 3-meter sediment core collected from Andy Lake, Alaska. The core was obtained during fieldwork supported by the National Science Foundation (NSF) Arctic Doctoral Dissertation Research Improvement Grant #2230019, titled Assessing the impacts of Pleistocene megaherbivores on vegetation stability and resilience in the Arctic, awarded to Principal Investigator (PI) Jacquelyn L. Gill and Co-PI Alessandro Mereghetti. The primary objective of this project is to investigate how Pleistocene megafaunal diversity influenced long-term plant community dynamics and ecosystem resilience in Arctic environments. These data contribute to understanding ecological baselines and biotic responses to past climate and extinction events, with implications for modern conservation and rewilding strategies. 
    more » « less
  5. Abstract The National Ecological Observatory Network Terrestrial Observation System (NEON TOS) produces open‐access data products that allow data users to investigate the impact of change drivers on key “sentinel” taxa and soils. The spatial and temporal sampling strategy that coordinates implementation of these protocols enables integration across TOS products and with products generated by NEON aquatic, remote sensing, and terrestrial instrument subsystems. Here, we illustrate the plots and sampling units that make up the physical foundation of a NEON TOS site, and we describe the scales (subplot, plot, airshed, and site) at which sampling is spatially colocated across protocols and subsystems. We also describe how moderate resolution imaging spectroradiometer‐enhanced vegetation index (MODIS‐EVI) phenology data are used to temporally coordinate TOS sampling within and across years at the continental scale of the observatory. Individually, TOS protocols produce data products that provide insight into populations, communities, and ecosystem processes. Within the spatial and temporal framework that guides cross‐protocol implementation, the ability to draw inference across data products is enhanced. To illustrate this point, we develop an example using R software that links two TOS data products collected with different temporal frequencies at both plot and site spatial scales. A thorough understanding of how TOS protocols are integrated with each other in space and time, and with other NEON subsystems, is necessary to leverage NEON data products to maximum effect. For example, a researcher must understand the spatial and temporal scales at which soil biogeochemistry data, soil microbe biomass data, and plant litter production and chemistry data may be combined to quantify soil nutrient stocks and fluxes across NEON sites. We present clear links among TOS protocols and across NEON subsystems that will enhance the utility of NEON TOS data products for the data user community. 
    more » « less