skip to main content


This content will become publicly available on May 1, 2024

Title: Machine-Aided Bridge Deck Crack Condition State Assessment Using Artificial Intelligence
The Federal Highway Administration (FHWA) mandates biannual bridge inspections to assess the condition of all bridges in the United States. These inspections are recorded in the National Bridge Inventory (NBI) and the respective state’s databases to manage, study, and analyze the data. As FHWA specifications become more complex, inspections require more training and field time. Recently, element-level inspections were added, assigning a condition state to each minor element in the bridge. To address this new requirement, a machine-aided bridge inspection method was developed using artificial intelligence (AI) to assist inspectors. The proposed method focuses on the condition state assessment of cracking in reinforced concrete bridge deck elements. The deep learning-based workflow integrated with image classification and semantic segmentation methods is utilized to extract information from images and evaluate the condition state of cracks according to FHWA specifications. The new workflow uses a deep neural network to extract information required by the bridge inspection manual, enabling the determination of the condition state of cracks in the deck. The results of experimentation demonstrate the effectiveness of this workflow for this application. The method also balances the costs and risks associated with increasing levels of AI involvement, enabling inspectors to better manage their resources. This AI-based method can be implemented by asset owners, such as Departments of Transportation, to better serve communities.  more » « less
Award ID(s):
1835473
NSF-PAR ID:
10453082
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
9
ISSN:
1424-8220
Page Range / eLocation ID:
4192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of a routine bridge inspection is to assess the physical and functional condition of a bridge according to a regularly scheduled interval. The Federal Highway Administration (FHWA) requires these inspections to be conducted at least every 2 years. Inspectors use simple tools and visual inspection techniques to determine the conditions of both the elements of the bridge structure and the bridge overall. While in the field, the data is collected in the form of images and notes; after the field work is complete, inspectors need to generate a report based on these data to document their findings. The report generation process includes several tasks: (1) evaluating the condition rating of each bridge element according to FHWA Recording and Coding Guide for Structure Inventory and Appraisal of the Nation’s Bridges; and (2) updating and organizing the bridge inspection images for the report. Both of tasks are time-consuming. This study focuses on assisting with the latter task by developing an artificial intelligence (AI)-based method to rapidly organize bridge inspection images and generate a report. In this paper, an image organization schema based on the FHWA Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges and the Manual for Bridge Element Inspection is described, and several convolutional neural network-based classifiers are trained with real inspection images collected in the field. Additionally, exchangeable image file (EXIF) information is automatically extracted to organize inspection images according to their time stamp. Finally, the Automated Bridge Image Reporting Tool (ABIRT) is described as a browser-based system built on the trained classifiers. Inspectors can directly upload images to this tool and rapidly obtain organized images and associated inspection report with the support of a computer which has an internet connection. The authors provide recommendations to inspectors for gathering future images to make the best use of this tool. 
    more » « less
  2. Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment. 
    more » « less
  3. null (Ed.)
    Bridge inspection is an important step in preserving and rehabilitating transportation infrastructure for extending their service lives. The advancement of mobile robotic technology allows the rapid collection of a large amount of inspection video data. However, the data are mainly the images of complex scenes, wherein a bridge of various structural elements mix with a cluttered background. Assisting bridge inspectors in extracting structural elements of bridges from the big complex video data, and sorting them out by classes, will prepare inspectors for the element-wise inspection to determine the condition of bridges. This article is motivated to develop an assistive intelligence model for segmenting multiclass bridge elements from the inspection videos captured by an aerial inspection platform. With a small initial training dataset labeled by inspectors, a Mask Region-based Convolutional Neural Network pre-trained on a large public dataset was transferred to the new task of multiclass bridge element segmentation. Besides, the temporal coherence analysis attempts to recover false negatives and identify the weakness that the neural network can learn to improve. Furthermore, a semi-supervised self-training method was developed to engage experienced inspectors in refining the network iteratively. Quantitative and qualitative results from evaluating the developed deep neural network demonstrate that the proposed method can utilize a small amount of time and guidance from experienced inspectors (3.58 h for labeling 66 images) to build the network of excellent performance (91.8% precision, 93.6% recall, and 92.7% f1-score). Importantly, the article illustrates an approach to leveraging the domain knowledge and experiences of bridge professionals into computational intelligence models to efficiently adapt the models to varied bridges in the National Bridge Inventory. 
    more » « less
  4. null (Ed.)
    Corrosion on steel bridge members is one of the most important bridge deficiencies that must be carefully monitored by inspectors. Human visual inspection is typically conducted first, and additional measures such as tapping bolts and measuring section losses can be used to assess the level of corrosion. This process becomes a challenge when some of the connections are placed in a location where inspectors have to climb up or down the steel members. To assist this inspection process, we developed a computervision based Unmanned Aerial Vehicle (UAV) system for monitoring the health of critical steel bridge connections (bolts, rivets, and pins). We used a UAV to collect images from a steel truss bridge. Then we fed the collected datasets into an instance level segmentation model using a region-based convolutional neural network to train characteristics of corrosion shown at steel connections with sets of labeled image data. The segmentation model identified locations of the connections in images and efficiently detected the members with corrosion on them. We evaluated the model based on how precisely it can detect rivets, bolts, pins, and corrosion damage on these members. The results showed robustness and practicality of our system which can also provide useful health information to bridge owners for future maintenance. These collected image data can be used to quantitatively track temporal changes and to monitor progression of damage in aging steel structures. Furthermore, the system can also assist inspectors in making decisions for further detailed inspections. 
    more » « less
  5. null (Ed.)
    Deep learning-based approaches for automatic document layout analysis and content extraction have the potential to unlock rich information trapped in historical documents on a large scale. One major hurdle is the lack of large datasets for training robust models. In particular, little training data exist for Asian languages. To this end, we present HJDataset, a Large Dataset of Historical Japanese Documents with Complex Layouts. It contains over 250,000 layout element annotations of seven types. In addition to bounding boxes and masks of the content regions, it also includes the hierarchical structures and reading orders for layout elements. The dataset is constructed using a combination of human and machine efforts. A semi-rule based method is developed to extract the layout elements, and the results are checked by human inspectors. The resulting large-scale dataset is used to provide baseline performance analyses for text region detection using state-of-the-art deep learning models. And we demonstrate the usefulness of the dataset on real-world document digitization tasks. 
    more » « less