skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: In transition: Avian biogeographic responses to a century of climate change across desert biomes
Abstract

Transition zones between biomes, also known as ecotones, are areas of pronounced ecological change. They are primarily maintained by abiotic factors and disturbance regimes that could hinder or promote species range shifts in response to climate change. We evaluated how climate change has affected metacommunity dynamics in two adjacent biomes and across their ecotone by resurveying 106 sites that were originally surveyed for avian diversity in the early 20th century by Joseph Grinnell and colleagues. The Mojave, a warm desert, and the Great Basin, a cold desert, have distinct assemblages and meet along a contiguous, east–west boundary. Both deserts substantially warmed over the past century, but the Mojave dried while the Great Basin became wetter. We examined whether the distinctiveness and composition of desert avifaunas have changed, if species distributions shifted, and how the transition zone impacted turnover patterns. Avifauna change was characterized by (a) reduced occupancy, range contractions, and idiosyncratic species redistributions; (b) degradation of historic community structure, and increased taxonomic and climatic differentiation of the species inhabiting the two deserts; and (c) high levels of turnover at the transition zone but little range expansion of species from the warm, dry Mojave into the cooler, wetter Great Basin. Although both deserts now support more drier and warmer tolerant species, their bird communities still occupy distinct climatological space and differ significantly in climatic composition. Our results suggest a persistent transition zone between biomes contributes to limiting the redistribution of birds, and highlight the importance of understanding how transition zone dynamics impact responses to climate change.

 
more » « less
PAR ID:
10453196
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
6
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3268-3284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Upper Cretaceous Western Interior Basin of North America provides a unique laboratory for constraining the effects of spatial climate patterns on the macroevolution and spatiotemporal distribution of biological communities across geologic timescales. Previous studies suggested that Western Interior Basin terrestrial ecosystems were divided into distinct southern and northern communities, and that this provincialism was maintained by a putative climate barrier at ∼50°N paleolatitude; however, this climate barrier hypothesis has yet to be tested. We present mean annual temperature (MAT) spatial interpolations for the Western Interior Basin that confirm the presence of a distinct terrestrial climate barrier in the form of a MAT transition zone between 48°N and 58°N paleolatitude during the final 15 m.y. of the Cretaceous. This transition zone was characterized by steep latitudinal temperature gradients and divided the Western Interior Basin into warm southern and cool northern biomes. Similarity analyses of new compilations of fossil pollen and leaf records from the Western Interior Basin suggest that the biogeographical distribution of primary producers in the Western Interior Basin was heavily influenced by the presence of this temperature transition zone, which in turn may have impacted the distribution of the entire trophic system across western North America. 
    more » « less
  2. null (Ed.)
    Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993–2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming. 
    more » « less
  3. Questions: Reordering of dominant species is an important mechanism of community response to global environmental change. We asked how wildfire (a pulse event) interacts with directional changes in climate (environmental presses) to affect plant community dynamics in a Chihuahuan Desert grassland. Location: Sevilleta National Wildlife Refuge, Socorro County, New Mexico, USA Methods: Vegetation cover by species was measured twice each year from 1989 to 2019 along two permanently located 400 m long line intercept transects, one in Chihuahuan Desert grassland, and the second in the ecotone between Chihuahuan Desert and Great Plains grasslands. Trends in community structure were plotted over time, and climate sensitivity functions were used to predict how changes in the Pacific Decadal Oscillation (PDO) affected vegetation dynamics. Results: Community composition was undergoing gradual change in the absence of disturbance in the ecotone and desert grassland. These changes were related to the reordering of abundances between two foundation grasses, Bouteloua eriopoda and B. gracilis, that together account for >80% of aboveground primary production. However, reordering varied over time in response to wildfire (a pulse) and changes in the PDO (a press). Community dynamics were initially related to the warm and cool phases of the PDO, but in the ecotone these relationships changed following wildfire, which reset the system. Conclusions: Species reordering is an important component of community dynamics in response to ecological presses. However, reordering is a complex, non-linear process in response to ecological presses that may change over time and interact with pulse disturbances. 
    more » « less
  4. Abstract Questions

    Reordering of dominant species is an important mechanism of community response to global environmental change. We asked how wildfire (apulseevent) interacts with directional changes in climate (environmentalpresses) to affect plant community dynamics in a Chihuahuan Desert grassland.

    Location

    Sevilleta National Wildlife Refuge, Socorro County, New Mexico, USA.

    Methods

    Vegetation cover by species was measured twice each year from 1989 to 2019 along two permanently located 400‐m long line intercept transects, one in Chihuahuan Desert grassland, and the second in the ecotone between Chihuahuan Desert and Great Plains grasslands. Trends in community structure were plotted over time, and climate sensitivity functions were used to predict how changes in the Pacific Decadal Oscillation (PDO) affected vegetation dynamics.

    Results

    Community composition was undergoing gradual change in the absence of disturbance in the ecotone and desert grassland. These changes were related to the reordering of abundances between two foundation grasses,Bouteloua eriopodaandB. gracilis, that together account for >80% of above‐ground primary production. However, reordering varied over time in response to wildfire (apulse) and changes in the PDO (apress). Community dynamics were initially related to the warm and cool phases of the PDO, but in the ecotone these relationships changed following wildfire, which reset the system.

    Conclusion

    Species reordering is an important component of community dynamics in response to ecological presses. However, reordering is a complex, non‐linear process in response to ecological presses that may change over time and interact with pulse disturbances.

     
    more » « less
  5. Abstract

    Climate plays a critical role in altering soil carbon (C) turnover and long‐term soil C storage by regulating water availability and temperature, and in turn biological activity. However, a systematic analysis of how key climatic factors shape the global patterns of soil C turnover is still lacking. Using global observation‐based data sets and a transit time theory, here we show that—excluding croplands and cold regions—soil C turnover time (τTO) and its variability are strongly related to ecosystem aridity through a power law scaling. According to such a relation, soil C turnover is faster but also more variable in wetter regions, suggesting more complex C cycling processes. The observed scaling ofτTOand its coefficient of variation with aridity underlines the fundamental controls of climate on soil C turnover and may help reconcile soil C models with empirical observations for improved projection of soil C dynamics under climate change.

     
    more » « less