skip to main content

Title: A comparison of parametric propensity score‐based methods for causal inference with multiple treatments and a binary outcome

We consider comparative effectiveness research (CER) from observational data with two or more treatments. In observational studies, the estimation of causal effects is prone to bias due to confounders related to both treatment and outcome. Methods based on propensity scores are routinely used to correct for such confounding biases. A large fraction of propensity score methods in the current literature consider the case of either two treatments or continuous outcome. There has been extensive literature with multiple treatment and binary outcome, but interest often lies in the intersection, for which the literature is still evolving. The contribution of this article is to focus on this intersection and compare across methods, some of which are fairly recent. We describe propensity‐based methods when more than two treatments are being compared, and the outcome is binary. We assess the relative performance of these methods through a set of simulation studies. The methods are applied to assess the effect of four common therapies for castration‐resistant advanced‐stage prostate cancer. The data consist of medical and pharmacy claims from a large national private health insurance network, with the adverse outcome being admission to the emergency room within a short time window of treatment initiation.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Statistics in Medicine
Page Range / eLocation ID:
p. 1653-1677
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Individuals may respond to treatments with significant heterogeneity. To optimize the treatment effect, it is necessary to recommend treatments based on individual characteristics. Existing methods in the literature for learning individualized treatment regimes are usually designed for randomized studies with binary treatments. In this study, we propose an algorithm to extend random forest of interaction trees (Su et al., 2009) to accommodate multiple treatments. By integrating the generalized propensity score into the interaction tree growing process, the proposed method can handle both randomized and observational study data with multiple treatments. The performance of the proposed method, relative to existing approaches in the literature, is evaluated through simulation studies. The proposed method is applied to an assessment of multiple voluntary educational programmes at a large public university.

    more » « less
  2. Summary

    Comparative effectiveness research often involves evaluating the differences in the risks of an event of interest between two or more treatments using observational data. Often, the post‐treatment outcome of interest is whether the event happens within a pre‐specified time window, which leads to a binary outcome. One source of bias for estimating the causal treatment effect is the presence of confounders, which are usually controlled using propensity score‐based methods. An additional source of bias is right‐censoring, which occurs when the information on the outcome of interest is not completely available due to dropout, study termination, or treatment switch before the event of interest. We propose an inverse probability weighted regression‐based estimator that can simultaneously handle both confounding and right‐censoring, calling the method CIPWR, with the letter C highlighting the censoring component. CIPWR estimates the average treatment effects by averaging the predicted outcomes obtained from a logistic regression model that is fitted using a weighted score function. The CIPWR estimator has a double robustness property such that estimation consistency can be achieved when either the model for the outcome or the models for both treatment and censoring are correctly specified. We establish the asymptotic properties of the CIPWR estimator for conducting inference, and compare its finite sample performance with that of several alternatives through simulation studies. The methods under comparison are applied to a cohort of prostate cancer patients from an insurance claims database for comparing the adverse effects of four candidate drugs for advanced stage prostate cancer.

    more » « less
  3. Multi-dimensional heterogeneity and endogeneity are important features of models with multiple treatments. We consider a heterogeneous coefficients model where the outcome is a linear combination of dummy treatment variables, with each variable representing a different kind of treatment. We use control variables to give necessary and sufficient conditions for identification of average treatment effects. With mutually exclusive treatments we find that, provided the heterogeneous coefficients are mean independent from treatments given the controls, a simple identification condition is that the generalized propensity scores (Imbens, 2000) be bounded away from zero and that their sum be bounded away from one, with probability one. Our analysis extends to distributional and quantile treatment effects, as well as corresponding treatment effects on the treated. These results generalize the classical identification result of Rosenbaum & Rubin (1983) for binary treatments. 
    more » « less
  4. Abstract

    We consider estimating average treatment effects (ATE) of a binary treatment in observational data when data‐driven variable selection is needed to select relevant covariates from a moderately large number of available covariates . To leverage covariates among predictive of the outcome for efficiency gain while using regularization to fit a parametric propensity score (PS) model, we consider a dimension reduction of based on fitting both working PS and outcome models using adaptive LASSO. A novel PS estimator, the Double‐index Propensity Score (DiPS), is proposed, in which the treatment status is smoothed over the linear predictors for from both the initial working models. The ATE is estimated by using the DiPS in a normalized inverse probability weighting estimator, which is found to maintain double robustness and also local semiparametric efficiency with a fixed number of covariatesp. Under misspecification of working models, the smoothing step leads to gains in efficiency and robustness over traditional doubly robust estimators. These results are extended to the case wherepdiverges with sample size and working models are sparse. Simulations show the benefits of the approach in finite samples. We illustrate the method by estimating the ATE of statins on colorectal cancer risk in an electronic medical record study and the effect of smoking on C‐reactive protein in the Framingham Offspring Study.

    more » « less
  5. Summary

    The problem of estimating the average treatment effects is important when evaluating the effectiveness of medical treatments or social intervention policies. Most of the existing methods for estimating the average treatment effect rely on some parametric assumptions about the propensity score model or the outcome regression model one way or the other. In reality, both models are prone to misspecification, which can have undue influence on the estimated average treatment effect. We propose an alternative robust approach to estimating the average treatment effect based on observational data in the challenging situation when neither a plausible parametric outcome model nor a reliable parametric propensity score model is available. Our estimator can be considered as a robust extension of the popular class of propensity score weighted estimators. This approach has the advantage of being robust, flexible, data adaptive, and it can handle many covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity score weights semiparametrically by using a non-parametric link function to relate the treatment assignment indicator to a low-dimensional structure of the covariates which are formed typically by several linear combinations of the covariates. We develop a class of consistent estimators for the average treatment effect and study their theoretical properties. We demonstrate the robust performance of the estimators on simulated data and a real data example of investigating the effect of maternal smoking on babies’ birth weight.

    more » « less