skip to main content

Title: Ear mite infection is associated with altered microbial communities in genetically depauperate Santa Catalina Island foxes ( Urocyon littoralis catalinae )

The host‐associated microbiome is increasingly recognized as a critical player in health and immunity. Recent studies have shown that disruption of commensal microbial communities can contribute to disease pathogenesis and severity. Santa Catalina Island foxes (Urocyon littoralis catalinae) present a compelling system in which to examine microbial dynamics in wildlife due to their depauperate genomic structure and extremely high prevalence of ceruminous gland tumors. Although the precise cause is yet unknown, infection with ear mites (Otodectes cynotis) has been linked to chronic inflammation, which is associated with abnormal cell growth and tumor development. Given the paucity of genomic variation in these foxes, other dimensions of molecular diversity, such as commensal microbes, may be critical to host response and disease pathology. We characterized the host‐associated microbiome across six body sites of Santa Catalina Island foxes, and performed differential abundance testing between healthy and mite‐infected ear canals. We found that mite infection was significantly associated with reduced microbial diversity and evenness, with the opportunistic pathogenStaphylococcus pseudintermediusdominating the ear canal community. These results suggest that secondary bacterial infection may contribute to the sustained inflammation associated with tumor development. As the emergence of antibiotic resistant strains remains a concern of the medical, veterinary, and conservation communities, uncovering high relative abundance ofS. pseudintermediusprovides critical insight into the pathogenesis of this complex system. Through use of culture‐independent sequencing techniques, this study contributes to the broader effort of applying a more inclusive understanding of molecular diversity to questions within wildlife disease ecology.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 1463-1475
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bacterial communities in and on wild hosts are increasingly appreciated for their importance in host health. Through both direct and indirect interactions, bacteria lining vertebrate gut mucosa provide hosts protection against infectious pathogens, sometimes even in distal body regions through immune regulation. In house finches ( Haemorhous mexicanus ), the bacterial pathogen Mycoplasma gallisepticum (MG) causes conjunctivitis, with ocular inflammation mediated by pro- and anti-inflammatory cytokines and infection triggering MG-specific antibodies. Here, we tested the role of gut bacteria in host responses to MG by using oral antibiotics to perturb bacteria in the gut of captive house finches prior to experimental inoculation with MG. We found no clear support for an impact of gut bacterial disruption on conjunctival pathology, MG load, or plasma antibody levels. However, there was a non-significant trend for birds with intact gut communities to have greater conjunctival pathology, suggesting a possible impact of gut bacteria on pro-inflammatory cytokine stimulation. Using 16S bacterial rRNA amplicon sequencing, we found dramatic differences in cloacal bacterial community composition between captive, wild-caught house finches in our experiment and free-living finches from the same population, with lower bacterial richness and core communities composed of fewer genera in captive finches. We hypothesize that captivity may have affected the strength of results in this experiment, necessitating further study with this consideration. The abundance of anthropogenic impacts on wildlife and their bacterial communities, alongside the emergence and spread of infectious diseases, highlights the importance of studies addressing the role of commensal bacteria in health and disease, and the consequences of gut bacterial shifts on wild hosts. 
    more » « less
  2. Abstract

    Neopterin, a product of activated white blood cells, is a marker of nonspecific inflammation that can capture variation in immune investment or disease-related immune activity and can be collected noninvasively in urine. Mounting studies in wildlife point to lifetime patterns in neopterin related to immune development, aging, and certain diseases, but rarely are studies able to assess whether neopterin can capture multiple concurrent dimensions of health and disease in a single system. We assessed the relationship between urinary neopterin stored on filter paper and multiple metrics of health and disease in wild geladas (Theropithecus gelada), primates endemic to the Ethiopian highlands. We tested whether neopterin captures age-related variation in inflammation arising from developing immunity in infancy and chronic inflammation in old age, inflammation related to intramuscular tapeworm infection, helminth-induced anti-inflammatory immunomodulation, and perturbations in the gastrointestinal microbiome. We found that neopterin had a U-shaped relationship with age, no association with larval tapeworm infection, a negative relationship with metrics related to gastrointestinal helminth infection, and a negative relationship with microbial diversity. Together with growing research on neopterin and specific diseases, our results demonstrate that urinary neopterin can be a powerful tool for assessing multiple dimensions of health and disease in wildlife.

    more » « less
  3. Rawls, John F. ; McFall-Ngai, Margaret J. (Ed.)
    ABSTRACT Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition. IMPORTANCE Here, we document associations between host gene expression and gut microbiome composition in a nonmammalian vertebrate species. We highlight associations between expression of immune genes and both microbiome diversity and abundance of specific microbial taxa. These findings support other findings from model systems which have suggested that gut microbiome composition and host immunity are intimately linked. Furthermore, we demonstrate that these correlations are truly systemic; the gene expression detailed here was collected from an important fish immune organ (the head kidney) that is anatomically distant from the gut. This emphasizes the systemic impact of connections between gut microbiota and host immune function. Our work is a significant advancement in the understanding of immune-microbiome links in nonmodel, natural systems. 
    more » « less
  4. Raina, Jean-Baptiste (Ed.)
    ABSTRACT Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host–pathogen–microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina , is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae . We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass ( Zostera marina ) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers. 
    more » « less
  5. Abstract

    Sin Nombre virus (SNV) is a zoonotic virus that is highly pathogenic to humans. The deer mouse,Peromyscus maniculatus, is the primary host of SNV, and SNV prevalence inPmaniculatusis an important indicator of human disease risk. Because the California Channel Islands contain permanent human settlements, receive hundreds of thousands of visitors each year, and can have extremely high densities ofPmaniculatus, surveillance for SNV in islandPmaniculatusis important for understanding the human risk of zoonotic disease. Despite the importance of surveillance on these heavily utilized islands, SNV prevalence (i.e. the proportion ofPmaniculatusthat test positive to antibodies to SNV) has not been examined in the last 13–27 years. We present data on 1,610 mice sampled for four consecutive years (2014–2017) on five of the California Channel Islands: East Anacapa, Santa Barbara, Santa Catalina, San Nicolas, and San Clemente. Despite historical data indicating SNV‐positive mice on San Clemente and Santa Catalina, we detected no SNV‐positive mice on these islands, suggesting very low prevalence or possible loss of SNV. Islands historically free of SNV (East Anacapa, Santa Barbara, and San Nicolas) remained free of SNV, suggesting that rates of pathogen introduction from other islands and/or the mainland are low. Although continued surveillance is warranted to determine whether SNV establishes on these islands, our work helps inform current human disease risk in these locations and suggests that SNV prevalence on these islands is currently very low.

    more » « less