skip to main content

Title: Coupled long‐term limnological data and sedimentary records reveal new control on water quality in a eutrophic lake

Human impacts on freshwater ecosystems are pervasive, but the short and discontinuous nature of most datasets limits our ability to understand the controls on water quality and effectively manage freshwater resources. We examine change in Lake Mendota (Madison, Wisconsin) over the last two centuries by pairing analyses of a sedimentary archive with the site's > 100 yr limnological record. We show that eutrophication of the lake, evident as an abrupt shift in sediment composition, began in the late 19thcentury following the intensification of urban and agricultural land use in the watershed. Efforts to address deterioration of lake water quality, including the removal of point‐source pollutants and biomanipulation, have had a measurable influence on sediment composition and water clarity. Since the early 1980s, quasi‐seasonal cycles of phytoplankton blooms have induced calcite precipitation, leaving distinct laminations in the sedimentary record. These “whiting events” evidently did not accumulate in lake sediments until the late 20thcentury, indicating that efforts to remediate water quality have shifted the lake to a new ecosystem state. Calcite whitings can improve water quality in eutrophic lakes by coprecipitation with phosphate, increasing phosphorus (P) burial in lake sediments. Using long‐term limnological records, we report negative correlations between calcite saturation indices and P in lake surface waters and show that calcite whitings could partially explain recent P decline in Lake Mendota surface waters. Our study reveals a previously uncharacterized potential control on water quality in this eutrophic lake and demonstrates the benefit of coupling long‐term limnological data with sedimentary records.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.

    more » « less
  2. Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle.

    more » « less
  3. Abstract

    A 101 m thick stratigraphically complete late Coniacian–early Santonian (ca89 to 83 Ma) sedimentary sequence drilled in Tanzania (Tanzania Drilling Project Site 39) allows, for the first time, examination of the planktonic foraminiferal biostratigraphy and evolution, the depositional history, and geochemical patterns of the subtropical–tropical Indian Ocean region. The sedimentary succession corresponds to an outer shelf to upper slope setting and is dominated by calcareous clayey siltstones and mudstones. The occurrences of Tethyan marker species enable application of the tropical biozonation including identification of theDicarinella concavataandDicarinella asymetricaZones. In addition, Tanzania Drilling Project Site 39 is proposed as reference section for the Coniacian/Santonian boundary in the Indian Ocean with the boundary placed at the lowest occurrence ofGlobotruncana linneianain agreement with the Global Stratotype Section and Point (Spain). The record at Tanzania Drilling Project Site 39 provides a unique opportunity to document the planktonic foraminiferal evolution in a subtropical marginal sea environment during a key period in their evolutionary history characterized by a major radiation among the deep‐dwelling taxa. Combined documentation of lithological and geochemical changes (%CaCO3, %Corg,δ13Ccarbandδ18Ocarb) reveals a setting influenced by continental‐derived nutrients in theDicarinella concavataZone (Lindi Formation) with a change to higher carbonate production and reduced surface water primary productivity in the overlyingDicarinella asymetricaZone (Nangurukuru Formation). Planktonic foraminiferal assemblage changes mirror the depositional and geochemical trends and indicate a progressive shift from a more eutrophic to a more oligotrophic regime through time. At the local scale, this palaeoceanographic scenario is consistent with the deepening of coastal Tanzania in response to the Late Cretaceous marine transgression registered in south‐east Tanzania. Because the tectonic evolution and sea‐level rise along the East Africa continental margin is superimposed on the Coniacian–Campanian global long‐term sea‐level high, this study hypothesizes that the epicontinental invasion of blue waters may have favoured radiation among deep‐dwelling taxa.

    more » « less
  4. null (Ed.)
    Changes in mixing regimes and CO2 availability may promote harmful cyanobacterial blooms in polymictic lakes and ponds globally, but the underlying mechanisms still remain unclear. We integrated results from a natural experiment comprising an average-wet year (2011) and one with heat waves (2012), a long-term meteorological dataset (1960–2010), historical phosphorus concentrations and corresponding sedimentary pigment records, to determine, on different temporal scales, the mechanistic controls of cyanobacterial blooms in a eutrophic polymictic lake. Intense warming in 2012 was associated with: 1) increased stability of the water column with buoyancy frequencies exceeding 40 cph at the surface, 2) high phytoplankton biomass in spring (up to 125 mg WW L-1), 3) reduced downward transport of heat and 4) persistently depleted epilimnetic CO2 concentrations. CO2 depletion was effectively maintained by intense uptake by phytoplankton (influx up to 30 mmol m-2 d-1) in combination with reduced carbon inputs from the watershed during dry periods. Under eutrophic conditions these effects triggered massive bloom of buoyant cyanobacteria (up to 300 mg WW L-1). Complementary evidence from polynomial regression modelling using long-term datasets revealed that warming is the most important predictor of cyanobacterial abundance during the second half of the last century explaining 78% of the observed positive trend, whereas phosphorus concentration explained only 10% thereof. Together the results from the interannual comparison and the multi-decadal record indicate that hotter and drier climates increase water column stratification and decrease CO2 availability in eutrophic polymictic lakes. This combination catalyzes blooms of buoyant cyanobacteria. 
    more » « less
  5. Jackson Lake supplies valuable cultural and provisioning ecosystem services to the Upper Snake River watershed in Wyoming and Idaho (western USA). Construction of Jackson Lake Dam in the early 20th century raised lake level by ∼12 m, generating an important water resource supporting agriculture and ranching, as well as tourism associated with Grand Teton National Park. Outlet engineering drastically altered Jackson Lake’s surface area, morphology, and relationship with the inflowing Snake River, yet the consequences for nutrient dynamics and algae in the lake are unknown. Here, we report the results of a retrospective environmental assessment completed for Jackson Lake using a paleolimnological approach. Paleoecological (diatoms) and geochemical datasets were developed on a well-dated sediment core and compared with available hydroclimate data from the region, to assess patterns of limnological change. The core spans the termination of the Little Ice Age and extends to the present day (∼1654–2019 CE). Diatom assemblages prior to dam installation are characterized by high relative abundances of plankton that thrive under low nutrient availability, most likely resulting from prolonged seasonal ice cover and perhaps a single, short episode of deep convective mixing. Following dam construction, diatom assemblages shifted to planktic species that favor more nutrient-rich waters. Elemental abundances of sedimentary nitrogen and phosphorous support the interpretation that dam installation resulted in a more mesotrophic state in Jackson Lake after ∼1916 CE. The data are consistent with enhanced nutrient loading associated with dam emplacement, which inundated deltaic wetlands and nearshore vegetation, and perhaps increased water residence times. The results of the study highlight the sensitivity of algal composition and productivity to changes in nutrient status that accompany outlet engineering of natural lakes by humans and have implications for water resource management. 
    more » « less