Monitoring soil nitrogen (N) dynamics in agroecosystems is foundational to soil health management and is critical for maximizing crop productivity in contrasting management systems. The newly established soil health indicator, autoclaved‐citrate extractable (ACE) protein, measures an organically bound pool of N. However, the relationship between ACE protein and other N‐related soil health indicators is poorly understood. In this study, ACE protein is investigated in relation to other soil N measures at four timepoints across a single growing season along a 33‐year‐old replicated eight‐system management intensity gradient located in southwest Michigan, USA. On average, polyculture perennial systems that promote soil health had two to four times higher (2–12 g kg−1higher) ACE protein concentrations compared to annual cropping and monoculture perennial systems. In addition, ACE protein fluctuated less than total soil N, NH4+‐N, and NO3−‐N across the growing season, which shows the potential for ACE protein to serve as a reliable indicator of soil health and soil organic N status. Furthermore, ACE protein was positively correlated with total soil N and NH4+‐N and negatively correlated with NO3−‐N at individual sampling timepoints across the management intensity gradient. In addition, ACE protein, measured toward the end of the growing season, showed a consistent and positive trend with yield across different systems. This study highlights the potential for ACE protein as an indicator of sustainable management practices, SOM cycling, and soil health and calls for more studies investigating its relationship with crop productivity.
Soil health has received heightened interest because of its association with long‐term agricultural sustainability and ecological benefits, including soil carbon (C) accumulation. We examined the effects of crop diversity and perenniality on soil biological health and assessed impacts on mineralization and C stabilization processes across 10 systems including four no‐till annual row crops, two monoculture perennials, and four polyculture perennials. Crop diversity increased soil biological health in both annual and perennial systems. Rotated annuals with a cover crop increased permanganate oxidizable C (POXC) and soil organic matter relative to continuous corn (
- Award ID(s):
- 1832042
- PAR ID:
- 10453292
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Agricultural & Environmental Letters
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2471-9625
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Removal of biomass for bioenergy production may decrease soil organic carbon. While perennials or cover‐cropped grains often have greater root production than annual grain crops, they variably impact soil carbon and underlying mechanisms remain unclear. We used high‐frequency measurements of soil respiration and natural abundance carbon stable isotopes to differentiate respiration sources, pool sizes, and decomposition rate constants during a 10 month incubation of soils collected to 1 m depth from a 10 year old field experiment in Iowa, United States. Conversion of corn–soybean rotations to reconstructed prairies or addition of a rye cover crop to continuous corn significantly altered respiration sources and dynamics of fast‐ and slow‐cycling carbon (turnover times of weeks to months–years, respectively), but had little effect on bulk soil carbon and several extractable pools (except in fertilized prairie). Both unfertilized and fertilized prairies increased slow‐cycling carbon pools relative to annual crops, but only in 0–25 cm soil. Compared with fertilized prairie, the unfertilized prairie significantly increased decomposition rates of fast‐ and slow‐cycling carbon pools in 0–25 cm soil, likely explaining the lack of significant bulk soil carbon accrual despite twofold greater root production. Carbon derived from C4plants decomposed faster than C3‐derived carbon across all depths and cropping systems and contributions of C3‐carbon to respiration increased with depth. Respiration of cover crop‐derived carbon was greatest in 0–25 cm soil but comprised >25% of respiration below 25 cm, implying a disproportionate impact of the cover crop on deep soil metabolism. However, the cover crop also increased the decomposition rates of fast‐ and slow‐cycling carbon pools and decreased their pool sizes across all depths relative to corn without a cover crop. Despite their notable environmental benefits, neither unfertilized perennials nor cover crops necessarily promote rapid soil carbon sequestration relative to conventional annual bioenergy systems because of concomitant increases in decomposition.
-
Abstract Biofuel crops, including annuals such as maize (
Zea mays L.), soybean [Glycine max (L.) Merr.], and canola (Brassica napus L.), as well as high‐biomass perennial grasses such as miscanthus (Miscanthus ×giganteus J.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large‐scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake in situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009–2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2–34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011. -
Abstract Drought occurrence is increasing due to anthropogenic climate change. Drought can negatively affect plants via reduced water below‐ground and increased evaporative demand or vapour pressure deficit (VPD) above‐ground. Past work has shown that plant diversity can ameliorate the negative effects of drought in plant communities, but these results are inconsistent between experimental and natural drought studies. Furthermore, while studies on the negative effects of reduced soil moisture on plant growth in drought experiments are abundant, the effects of predicted increases in atmospheric VPD have been neglected.
We directly manipulated atmospheric relative humidity in a biodiversity and drought experiment at the California State University, Los Angeles (CA, USA) under three atmospheric conditions (ambient, dehumidified and humidified), two treatments of native perennial grass diversity (monoculture and eight species polyculture) and two soil drought treatments (control and drought). We assessed both polyculture plant community and individual species (
Poa secunda ) responses to atmospheric drought and soil drought.We found that soil drought only limits above‐ground biomass production when atmospheric conditions are also dry. We also found that
P. secunda was limited by increased competition in polyculture when ambient atmospheric conditions were humid but was facilitated by diversity when atmospheric conditions were dry.Synthesis . Higher diversity ecosystems may be capable of protecting individual species from the negative effects of drought (facilitation). Without careful experimental manipulation of atmospheric drought, this important mechanism will be missed. -
Abstract Surface albedo can affect the energy budget and subsequently cause localized warming or cooling of the climate. When we convert a substantial portion of lands to agriculture, land surface properties are consequently altered, including albedo. Through crop selection and management, one can increase crop albedo to obtain higher levels of localized cooling effects to mitigate global warming. Still, there is little understanding about how distinctive features of a cropping system may be responsible for elevated albedo and consequently for the cooling potential of cultivated lands. To address this pressing issue, we conducted seasonal measurements of surface reflectivity during five growing seasons on annual crops of corn-soybean–winter wheat (
Zea mays L.- Glycine max L. Merrill—Triticum aestivum L. ; CSW) rotations at three agronomic intensities, a monoculture of perennial switchgrass, and perennial polycultures of early successional and restored prairie grasslands. We found that crop-species, agronomic intensity, seasonality, and plant phenology had significant effects on albedo. The mean ± SD of albedo was highest in perennial crops of switchgrass (Panicum virgatum ; 0.179 ± 0.04), intermediate in early successional crops (0.170 ± 0.04), and lowest in a reduced input corn systems with cover crops (0.154 ± 0.02). Thes trongest cooling potentials were found in soybean (−0.450 kg CO2e m−2yr−1) and switchgrass (−0.367 kg CO2e m−2yr−1), with up to −0.265 kg CO2e m−2yr−1of localized climate cooling annually provided by different agroecosystems. We also demonstrated how diverse ecosystems, leaf canopy, and agronomic practices can affect surface reflectivity and provide another potential nature-based solution for reducing global warming at localized scales.