skip to main content


Title: Geomagnetic and Solar Dependency of MSTIDs Occurrence Rate: A Climatology Based on Airglow Observations From the Arecibo Observatory ROF
Abstract

We employ in this work the firstO(1D) 630.0‐nmairglow data set registered at the Remote Optical Facility (ROF) in Culebra, Puerto Rico, during the descending phase of the solar cycle #24. From 4 November 2015 to 26 September 2019, observations were carried out during 633 nights at ROF using a small all‐sky imager, while MSTID events were identified in 225 of 499 nights classified as clear. A quantitative analysis of these MSTIDs and their dependency by geophysical parameters (solar and geomagnetic activities) are the main focus of this study. We introduce an original statistical methodology that examines the unique features of the data set and minimizes the cross contamination of individual modulators onto one another, avoiding bias in the results. Our findings include a primary peak of MSTIDs occurrence in the December solstice and a secondary peak in the June solstice. We observed a remarkable correlation in the occurrence rate of the MSTIDs with the geomagnetic activity. A notable modulation of the MSTIDs occurrence rate with the solar activity is also found, which includes periods of correlation and anticorrelation depending on the season. This modulation has an annual component that is ~33% and ~83% stronger than the semiannual and terannual components, respectively. We discuss these findings based on a previous study of the thermospheric neutral winds derived from 30 years of Fabry‐Perot interferometer observations at Arecibo Observatory. Our results, which are valid for low to moderate solar activity, point out circumstances that might explain differences in previous climatological studies of nighttime MSTIDs.

 
more » « less
Award ID(s):
1759573 1903336
NSF-PAR ID:
10453295
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
7
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze daytime quiet‐time MSTIDs between 2013 and 2015 at the geomagnetic equatorial and low latitude regions of the Chilean and Argentinian Andes using keograms of detrended total electron content (dTEC). The MSTIDs had a higher occurrence rate at geomagnetic equatorial latitudes in the June solstice (winter) and spring (SON). The propagation directions changed with the season: summer (DJF) [southeast, south, southwest, and west], winter (JJA) [north and northeast], and equinoxes [north, northeast, south, southwest, and west]. In addition, the MSTIDs at low latitudes observed between 8:00 and 12:00 UT occur more often during the December solstice and propagate northwestward and northeastward. After 12:00 UT, they are mostly observed in the equinoxes and June solstice. Their predominant propagation directions depend on the season: summer (all directions with a preference for northeastward), autumn (MAM) [north and northeast], winter (north and northeast), and spring (north, northeast, and southwest). The MSTID propagation direction at different latitudes was explained by the location of the possible sources. Besides, we calculated MSTIDs parameters at geomagnetic low latitudes over the Andes Mountains and compared them with those estimated at the geomagnetic equatorial latitudes. We found that the former is smaller on average than the latter. Also, our observations validate recent model results obtained during geomagnetically quiet‐time as well as daytime MSTIDs during winter over the south of South America. These results suggest that secondary or high‐order gravity waves (GWs) from orographic forcing are the most likely source of these MSTIDs.

     
    more » « less
  2. Abstract

    We investigate the correlation of sporadic E (Es) with the occurrence of medium‐scale traveling ionospheric disturbances (MSTIDs) at night in middle latitudes (25°–40°N and 25°–40°S magnetic latitudes) by examining their occurrence climatology. The occurrence climatology of Es and MSTIDs is derived using the Challenging Minisatellite Payload satellite data acquired in 2001–2008 and 2001–2009, respectively. Electron density irregularities and radio scintillations are used as the detection proxies of MSTIDs and Es, respectively. The occurrence rate of MSTIDs shows a semi‐annual variation with the primary peak during June solstices and the secondary peak during December solstices in both hemispheres. However, the occurrence rate of Es shows a seasonal variation with a pronounced peak in summer in both hemispheres. The occurrence of MSTIDs during local summer and equinoxes is correlated with the occurrence of local Es, but the high occurrence rate of MSTIDs in local winter is not correlated with local winter hemisphere Es. MSTIDs in the winter hemisphere are correlated with magnetically conjugate MSTIDs in the summer hemisphere; these summer hemisphere MSTIDs are correlated with the occurrence of Es in the summer hemisphere. The occurrence rate of MSTIDs clearly shows an increase with decreasing solar activity, but the solar cycle dependence of Es is not obvious from the data. This observation suggests that the generation of MSTIDs is significantly affected by factors other than Es such as the growth rate of the Perkins instability, atmospheric gravity waves, and theFregion conductance.

     
    more » « less
  3. Abstract

    The effect of eastward zonal wind speed (EZWS) on vertical drift velocity (E × Bdrift) that mainly controls the equatorial ionospheric irregularities has been explained theoretically and through numerical models. However, its effect on the seasonal and longitudinal variations ofE × Band the accompanying irregularities has not yet been investigated experimentally due to lack ofF‐layer wind speed measurements. Observations of EZWS from GOCE and ion density andE × Bfrom C/NOFS satellites for years 2011 and 2012 during quite times are used in this study. Monthly and longitudinal variations of the irregularity occurrence,E × B, and EZWS show similar patterns. We find that at most 50.85% of longitudinal variations ofE × Bcan be explained by the longitudinal variability of EZWS only. When the EZWS exceeds 150 m/s, the longitudinal variation of EZWS, geomagnetic field strength, and Pedersen conductivity explain 56.40–69.20% of the longitudinal variation ofE × B. In Atlantic, Africa, and Indian sectors, from 42.63% to 79.80% of the monthly variations of theE × Bcan be explained by the monthly variations of EZWS only. It is found also that EZWS andE × Bmay be linearly correlated during fall equinox and December solstice. The peak occurrence of irregularity in the Atlantic sector during November and December is due to the combined effect of large wind speed, solar terminator‐geomagnetic field alignment, and small geomagnetic field strength and Pedersen conductivity. Moreover, during June solstices, small EZWS corresponds to vertically downwardE × B, which suggests that other factors dominate theE × Bdrift rather than the EZWS during these periods.

     
    more » « less
  4. Abstract

    This study develops a new Bubble Index to quantify the intensity of 2‐D postsunset equatorial plasma bubbles (EPBs) in the American/Atlantic sector, using Global‐scale Observations of the Limb and Disk (GOLD) nighttime data. A climatology and day‐to‐day variability analysis of EPBs is conducted based on the newly‐derived Bubble Index with the following results: (a) EPBs show considerable seasonal and solar activity dependence, with stronger (weaker) intensity around December (June) solstice and high (low) solar activity years. (b) EPBs exhibit opposite geomagnetic activity dependencies during different storm phases: EPBs are intensified concurrently with an increasing Kp, but are suppressed with high Kp occurring 3–6 hr earlier. (c) For the first time, we found that EPBs' day‐to‐day variation exhibited quasi‐3‐day and quasi‐6‐day periods. A coordinated analysis of Ionospheric Connection Explorer (ICON) winds and ionosonde data suggests that this multi‐day periodicity was related to the planetary wave modulation through the wind‐driven dynamo.

     
    more » « less
  5. Abstract

    We use extensive incoherent scatter radar observations from the Jicamarca Radio Observatory to study the local time and bimonthly dependence of the equatorial disturbance dynamo vertical plasma drifts on solar flux and geomagnetic activity. We show that the daytime disturbance drifts have generally small magnitudes with largest values before noon and an apparent annual variation. Near dusk, they are downward throughout the year with largest values during the equinoxes and smallest during June solstice. These downward drifts increase strongly with solar flux and shift to later local times. They also increase with increasing geomagnetically active conditions with no apparent local time shift. The equinoctial evening downward disturbance drifts are larger during the autumnal equinox than during the vernal equinox. The nighttime disturbance drifts are upward and have small seasonal and solar cycle dependence but increase strongly with geomagnetic activity, particularly in the late night sector. Our results are in general agreement with those from previous theoretical and experimental studies, except near dusk where our results show much stronger seasonal and solar cycle dependence.

     
    more » « less