skip to main content


Title: Root‐niche separation between savanna trees and grasses is greater on sandier soils
Abstract

In savannas, partitioning of below‐ground resources by depth could facilitate tree–grass coexistence and shape vegetation responses to changing rainfall patterns. However, most studies assessing tree versus grass root‐niche partitioning have focused on one or two sites, limiting generalization about how rainfall and soil conditions influence the degree of rooting overlap across environmental gradients.

We used two complementary stable isotope techniques to quantify variation (a) in water uptake depths and (b) in fine‐root biomass distributions among dominant trees and grasses at eight semi‐arid savanna sites in Kruger National Park, South Africa. Sites were located on contrasting soil textures (clayey basaltic soils vs. sandy granitic soils) and paired along a gradient of mean annual rainfall.

Soil texture predicted variation in mean water uptake depths and fine‐root allocation. While grasses maintained roots close to the surface and consistently used shallow water, trees on sandy soils distributed roots more evenly across soil depths and used deeper soil water, resulting in greater divergence between tree and grass rooting on sandy soils. Mean annual rainfall predicted some variation among sites in tree water uptake depth, but had a weaker influence on fine‐root allocation.

Synthesis. Savanna trees overlapped more with shallow‐rooted grasses on clayey soils and were more distinct in their use of deeper soil layers on sandy soils, consistent with expected differences in infiltration and percolation. These differences, which could allow trees to escape grass competition more effectively on sandy soils, may explain observed differences in tree densities and rates of woody encroachment with soil texture. Differences in the degree of root‐niche separation could also drive heterogeneous responses of savanna vegetation to predicted shifts in the frequency and intensity of rainfall.

 
more » « less
Award ID(s):
1928875
NSF-PAR ID:
10453349
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
108
Issue:
6
ISSN:
0022-0477
Page Range / eLocation ID:
p. 2298-2308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Models of tree–grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade‐off between water use under wet conditions and drought tolerance.

    We measured whole‐plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm). We also quantified whole‐plant water‐use efficiency (WUE) and relative growth rate (RGR) under well‐watered conditions.

    Grasses transpired twice as much as trees on a leaf‐mass basis across all soil water potentials. Grasses also had a lower Ψosmthan trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses.

    Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade‐off in water‐use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much‐needed whole‐plant parameter estimates for African species.

     
    more » « less
  2. Abstract

    Differences in vertical root distributions are often assumed to create resource uptake trade‐offs that determine plant growth and coexistence. Yet, most plant roots are in shallow soils, and data linking root distributions with resource uptake and plant abundances remain elusive.

    Here we used a tracer experiment to describe the vertical distribution of absorptive roots of dominant species in a shrub–steppe ecosystem. To describe how these different rooting distributions affected water uptake in wet and dry soils across a growing season, we used a soil water movement model. Root traits were then correlated with plant landscape abundances.

    Deeper root distributions extracted more soil water, had larger unique hydrological niches and were more abundant on the landscape. Though most (>50%) root biomass and tracer uptake occurred in shallow soils (0–32 cm), the depth of 50% of tracer uptake varied from 11 to 32 cm across species and species with deeper rooting distributions were more abundant on the landscape (R2 = .95). The water flow model revealed that deeper rooting distributions should extract more soil water (i.e. a range of 60–113 mm of soil water) because shallow roots were often in dry soils. These potential water uptake values were tightly correlated with species’ abundances on the landscape (R2 = .90). Finally, each species’ rooting distribution demonstrated a depth and time at which it could extract more soil water than any other rooting distribution, and the size of these unique hydrological niches indices was also well correlated with species’ abundances (R2 = .89).

    Synthesis. Our results demonstrate not only a correlation between root distributions and species abundance, but also the mechanism through which differences in rooting distributions can determine resource uptake and niche partitioning, even when most roots are found in shallow soils.

     
    more » « less
  3. Premise

    Belowground functional traits play a significant role in determining plant water‐use strategies and plant performance, but we lack data on root traits across communities, particularly in the tropical savanna biome, where vegetation dynamics are hypothesized to be strongly driven by tree–grass functional differences in water use.

    Methods

    We grew seedlings of 21 tree and 18 grass species (N= 5 individuals per species) from the southern African savanna biome under greenhouse conditions and collected fine‐root segments from plants for histological analysis. We identified and measured xylem vessels in 539 individual root cross sections. We then quantified six root vascular anatomy traits and tested them for phylogenetic signals and tree–grass differences in trait values associated with vessel size, number, and hydraulic conductivity.

    Results

    Grass roots had larger root xylem vessels than trees, a higher proportion of their root cross‐sectional area comprised vessels, and they had higher estimated axial conductivities than trees, while trees had a higher number of vessels per root cross‐sectional area than grasses did. We found evidence of associations between trait values and phylogenetic relatedness in most of these traits across tree species, but not grasses.

    Conclusions

    Our findings support the hypothesis that grass roots have higher water transport capacity than tree roots in terms of maximum axial conductivity, consistent with the observation that grasses are more “aggressive” water users than trees under conditions of high soil moisture availability. Our study identifies root functional traits that may drive differential responses of trees and grasses to soil moisture availability.

     
    more » « less
  4. Abstract

    Root‐based functional traits are relatively overlooked as drivers of savanna plant community dynamics, an important gap in water‐limited ecosystems. Recent work has shed light on patterns of trait coordination in roots, but less is known about the relationship between root functional traits, water acquisition, and plant demographic rates. Here, we investigated how fine‐root vascular and morphological traits are related in two dominant PFTs (C3trees and C4grasses from the savanna biome), whether root traits can predict plant relative growth rate (RGR), and whether root trait multivariate relationships differ in trees and grasses. We used root data from 21 tree and 18 grass species grown under greenhouse conditions, and quantified a suite of vascular and morphological root traits. We used a principal components analysis (PCA) to identify common axes of trait variation, compared trait correlation matrices between the two PFTs, and investigated the relationship between PCA axes and individual traits and RGR. We found that there was no clear single axis integrating vascular and morphological traits, but found that vascular anatomy predicted RGR in both trees and grasses. Trait correlation matrices differed in trees and grasses, suggesting potentially divergent patterns of trait coordination between the two functional types. Our results suggested that, despite differences in trait relationships between trees and grasses, root conductivity may constrain maximum growth rate in both PFTs, highlighting the critical role that water relations play in savanna vegetation dynamics and suggesting that root water transport capacity is an important predictor of plant performance in the savanna biome.

     
    more » « less
  5. Abstract

    Forest encroachment into savannas is a widespread phenomenon, the rate of which may depend on soil conditions, species composition or changes in stand structure. As savanna specialist trees are replaced by generalist species, rates of stand development may increase. Because generalists can persist in forests, they are likely to grow more quickly and survive longer in dense stands, compared to savanna specialists. Furthermore, the faster growth rates of generalists may allow them to overtop and outcompete savanna specialists, causing rapid species turnover.

    We measured growth and survival of 6,147 individuals of 112 species of savanna and generalist tree species over a period of 10 years in an ecological reserve in Assis, São Paulo State, Brazil. We modelled growth and mortality as a function of soil texture and nutrients, tree size, competitive neighbourhood, and membership in savanna or generalist (species which can persist in forests and savannas) functional groups.

    Tree growth and survival was strongly influenced by competition, as estimated by the basal area of trees taller than a focal tree. At the stand level, savanna species are unable to contribute basal area growth in closed stands, while generalist species continue to increase in basal area even at high stand basal area. This phenomenon is driven by differences in growth and mortality. Generalists grew faster than savanna species, both in height and diameter. This difference in growth rates led to savanna species becoming suppressed more rapidly than generalists. When suppressed, savanna species were more than twice as likely to die than were generalists. Soils had inconsistent and mostly weak effects which were difficult to separate from gradients of stand structure.

    Synthesis. We demonstrate that the presence of generalist trees accelerates the rates of basal area accumulation due to their greater growth rates and tolerance of shading. Generalists outcompete savanna trees by growing faster in the open and overtopping savanna specialists. Due to the slow growth and high mortality of savanna species in the shade, they are unable to form closed‐canopy stands. Accounting for differences among functional types and development of vegetation structure is critical for modelling forest encroachment.

     
    more » « less