skip to main content

Title: Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?

Whether drought‐adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water‐relations traits besides gas exchange. We addressed this issue in two subspecies ofClarkia xantiana(Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation.


In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure–volume curve variables) in common environments.


The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits.


Clarkia xantianasubspecies’ differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Page Range / eLocation ID:
p. 309-319
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Populations often vary in their evolutionary responses to a shared environmental perturbation. A key hurdle in building more predictive models of rapid evolution is understanding this variation—why do some populations and traits evolve while others do not? We combined long-term demographic and environmental data, estimates of quantitative genetic variance components, a resurrection experiment and individual-based evolutionary simulations to gain mechanistic insights into contrasting evolutionary responses to a severe multi-year drought. We examined five traits in two populations of a native California plant, Clarkia xantiana , at three time points over 7 years. Earlier flowering phenology evolved in only one of the two populations, though both populations experienced similar drought severity and demographic declines and were estimated to have considerable additive genetic variance for flowering phenology. Pairing demographic and experimental data with evolutionary simulations suggested that while seed banks in both populations likely constrained evolutionary responses, a stronger seed bank in the non-evolving population resulted in evolutionary stasis. Gene flow through time via germ banks may be an important, underappreciated control on rapid evolution in response to extreme environmental perturbations. 
    more » « less
  2. Abstract

    In habitats where resource availability declines during the growing season,selection may favor early‐flowering individuals. Under such ephemerally favorable conditions, late‐blooming species (and individuals) may be particularly vulnerable to resource limitation of seed production. In California, a region prone to seasonal drought, members of the annual genusClarkiaare among the last to flower in the spring. We compared pollen limitation (PL) of seed set and outcrossing rates between early‐ and late‐flowering individuals in two mixed‐matingClarkiataxa to detect whether flowering time is associated with changes in seed set due to resource depletion,PL, or increased selfing. In 2008–2010, we hand‐pollinated one flower on a total of 1855 individual plants either Early (near the onset of flowering) or Late (near the end of flowering) in the flowering season and compared seed set to adjacent, open‐pollinated flowers on the same stem. To assess the contribution of pollen quality to reproduction, we first (2008) used allozymes to estimate outcrossing rates of seeds produced by Early and Late open‐pollinated flowers. Second (2009), we conducted an anther‐removal experiment to estimate self‐pollen deposition. Seed set inClarkia unguiculatawas not pollen‐limited.Clarkia xantianassp. xantianawas pollen‐limited in 2008 and 2010, but not 2009.PLdid not differ between Early and Late treatments. In both taxa, seed set of Early flowers was greater than Late flowers, but not due toPLin the latter. Reproduction was generally pollinator‐dependent. Most pollen deposition was xenogamous, and outcrossing rates were >0.7 – and similar between Early and Late periods. These results suggest that pollen receipt and pollen quality remain seasonally consistent. By contrast, the resources necessary to provision seeds decline, reducing the fitness benefits associated with resource allocation to ovules.

    more » « less
  3. Premise

    Strong correlations between traits can obscure their independent effects on components of reproduction. Style length (SL) and petal area (PA) vary within species, for example, but their independent effects on the opportunity for selection among pollen genotypes are poorly understood. Previous work inClarkiadetected a positive effect ofSLon pollen receipt, potentially intensifying selection. However, this apparent effect ofSLmay be influenced by a correlated trait, such asPA. Here, we examine the independent effects of these two traits on pollen receipt and performance.


    We collected petals and styles from wild populations of two insect‐pollinatedClarkiataxa and estimated the independent and combined effects ofSLandPAon pollen receipt and performance.


    In both taxa,SLandPAare positively correlated. InC. unguiculata, both traits positively and independently affect pollen receipt, but inC. xantianassp.xantiana, the two traits act only in combination to affect pollen receipt. In both taxa, pollen receipt positively affects the numbers of pollen tubes entering and penetrating the style, as well as pollen tube attrition.


    The effects ofSLandPAon pollen receipt and performance are taxon specific. InC. unguiculata, both traits may be independent targets of selection due to their effects on pollen receipt. InC. xantianassp.xantiana, by contrast, the combined (but not independent) effects ofSLandPAinfluence pollen receipt. Ecological differences between these taxa require exploration to understand the mechanisms by which these traits affect pollinator behavior.

    more » « less
  4. Abstract

    Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross‐environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross‐environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade‐off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress‐resistant crops.

    more » « less
  5. Summary

    Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits.Arabidopsis thalianaflowering‐time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering‐time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.

    more » « less