skip to main content


Title: Female common cuckoo calls dampen the mobbing intensity of great reed warbler hosts
Abstract

To avoid mobbing attacks by their hosts during egg laying, some avian brood parasites have evolved traits to visually and/or acoustically resemble predator(s) of their hosts. Prior work established that reed warblers (Acrocephalus scirpaceus), a small host species of the brood parasitic common cuckoo (Cuculus canorus), delayed returning to the nest when confronted by either the calls of the female cuckoo or that of the predatory sparrowhawk (Accipiter nisus). It remains less clear, however, whether female cuckoo calls also suppress the nest defences of larger and more aggressive hosts. Such hosts typically attack vigorously, and can even hurt the brood parasitic intruders, instead of fleeing in the face of danger. Here, we tested whether the female cuckoo calls dampen mobbing intensity in a much largerAcrocephalushost of the common cuckoo, the great reed warbler (A. arundinaceus). We presented great reed warbler pairs with female common cuckoo models at their nests without and then with playing back the female‐specific bubbling calls of the cuckoo. As controls, we tested the hosts’ responses to harmless collared dove (Streptopelia decaocto) models, also without and then with the playbacks of dove calls. We found that the playback of female brood parasite calls reduced the aggression of hosts towards the cuckoo models as compared to model presentations without female calls, but we detected no such effect of the control calls with dove models. Our results revealed that female cuckoo calls effectively suppress the antiparasitic responses of great reed warbler hosts, which could aid parasites to approach the nest undiscovered and to evade the costly attacks of this large host. Therefore, the female call can be regarded as a general part of the cuckoo's trickery repertoire for successful parasitism.

 
more » « less
NSF-PAR ID:
10453403
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ethology
Volume:
127
Issue:
3
ISSN:
0179-1613
Page Range / eLocation ID:
p. 286-293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many avian species are negatively impacted by obligate avian brood parasites, which lay their eggs in the nests of host species. The yellow warbler (Setophaga petechia), which is host to the brood-parasitic brown-headed cowbird (Molothrus ater), represents one of the best-replicated study systems assessing antiparasitic host defenses. Over 15 prior studies on yellow warblers have used model-presentation experiments, whereby breeding hosts are exposed to models of brown-headed cowbirds or other nest threats, to test for anti-parasitic defenses unique to this species. Here we present results from our own quasi-replication study of the yellow warbler/brown-headed cowbird system, which used a novel design compared to previous experiments by pivoting to conduct acoustic playback treatments only, rather than presenting visual models with or without calls. We exposed active yellow warbler nests to playbacks of brown-headed cowbird chatters (brood parasite), blue jay (Cyanocitta cristata; nest predator) calls, conspecific “seet” calls (a referential alarm call for brood parasitism risk), conspecific “chip” calls (a generic alarm call), or control wood thrush (Hylocichla mustelina; harmless heterospecific) songs during the incubation stage. Similar to previous studies, we found that female yellow warblers seet called more frequently in response to playbacks of both brood parasitic chatter calls and conspecific seet calls whereas they produced more chip calls in response to the playback of nest predator calls. In contrast, female yellow warblers approached all playbacks to similar distances, which was different from the proximity patterns seen in previous studies. Our study demonstrates the importance of both replicating, and also pivoting, experimental studies on nest defense behaviors, as differences in experimental design can elicit novel behavioral response patterns in the same species. 
    more » « less
  2. Abstract

    The brood parasitic Common CuckooCuculus canorusis best known for its two-note “cu-coo” call which is almost continuously uttered by male during the breeding season and can be heard across long distances in the field. Although the informative value of the cuckoo call was intensively investigated recently, it is still not clear whether call characteristic(s) indicate any of the phenotypic traits of the respective vocalising individuals. To fill this gap, we studied whether the call rate of male cuckoos (i.e., the number of calls uttered per unit of time) provides information on their body size, which might be a relevant trait during intrasexual territorial conflicts. We captured free-living male cuckoos and measured their body size parameters (mass, wing, tail and tarsus lengths). Each subject was then radio-tagged, released, and its individual “cu-coo” calls were recorded soon after that in the field. The results showed that none of the body size parameters covaried statistically with the call rates of individual male Common Cuckoos. In addition, we experimentally tested whether the “cu-coo” call rates affect behavioural responses of cuckoos using playbacks of either a quicker or a slower paced call than the calls with natural rates. Cuckoos responded similarly to both types of experimental playback treatments by approaching the speaker with statistically similar levels of responses as when presented with calls at the natural rate. We conclude that male Common Cuckoos do not advertise reliable information acoustically regarding their body size, and so, cuckoo calls are neither useful to characterize cuckoos’ phenotypic traits directly nor to indicate environmental quality indirectly.

     
    more » « less
  3. Abstract

    In animal communication, functionally referential alarm calls elicit the same behavioral responses as their referents, despite their typically distinct bioacoustic traits. Yet the auditory forebrain in at least one songbird species, the black-capped chickadeePoecile atricapillus, responds similarly to threat calls and their referent predatory owl calls, as assessed by immediate early gene responses in the secondary auditory forebrain nuclei. Whether and where in the brain such perceptual and cognitive equivalence is processed remains to be understood in most other avian systems. Here, we studied the functional neurogenomic (non-) equivalence of acoustic threat stimuli perception by the red-winged blackbirdAgelaius phoeniceusin response to the actual calls of the obligate brood parasitic brown-headed cowbirdMolothrus aterand the referential anti-parasitic alarm calls of the yellow warblerSetophaga petechia,upon which the blackbird is known to eavesdrop. Using RNA-sequencing from neural tissue in the auditory lobule (primary and secondary auditory nuclei combined), in contrast to previous findings, we found significant differences in the gene expression profiles of both an immediate early gene, ZENK (egr-1), and other song-system relevant gene-products in blackbirds responding to cowbird vs. warbler calls. In turn, direct cues of threats (including conspecific intruder calls and nest-predator calls) elicited higher ZENK and other differential gene expression patterns compared to harmless heterospecific calls. These patterns are consistent with a perceptual non-equivalence in the auditory forebrain of adult male red-winged blackbirds in response to referential calls and the calls of their referents.

     
    more » « less
  4. Abstract

    Brown‐headed cowbirds (Molothrus ater) are generalist obligate brood parasites, laying in the nest of nearly 300 avian species, and successfully parasitizing well over 100 host species. Cowbird eggs are generally considered non‐mimetic, although some have suggested that cowbird eggs resemble several of their host species’ eggs. To date, no investigation has examined the level of avian‐perceived similarity between cowbird and diverse host eggs in the contexts of light characteristics at the nest and the visual system of the relevant viewer. Because the cowbird exploits a wide range of species that lay in a variety of nest types, hosts view these eggs under an array of light conditions which could facilitate or hinder egg discrimination. When considering the visual system of the relevant viewers and the light conditions at their nest, we found that the coloration of cowbird eggs was more similar to host than non‐host species’ eggs. Host responses (whether they accept or reject cowbird eggs) were not statistically different when hosts perceived a large chromatic difference between their own eggs and the cowbird's eggs. Instead, we found that host responses were predicted by the degree to which nesting light conditions facilitated color similarity between host and cowbird eggs, such that hosts typically nesting under light conditions where this color discrimination task was more challenging were more likely to reject cowbird eggs. This suggests that the nesting light environment may have selected for increased coevolved egg recognition abilities in a suite of cowbird host species, even in the absence of parasitic egg color mimicry.

     
    more » « less
  5. Abstract

    Defending offspring incurs temporal and energetic costs and can be dangerous for the parents. Accordingly, the intensity of this costly behavior should reflect the perceived risk to the reproductive output. When facing costly brood parasitism by brown‐headed cowbirds (Molothrus ater), where cowbirds lay eggs in heterospecific nests and cause the hosts to care for their young, yellow warblers (Setophaga petechia) use referential “seet” calls to warn their mates of the parasitic danger. Yellow warblers of both sexes produce this call only in response to cowbirds or seet‐calling conspecifics. Seet calls are mainly produced during the laying and incubation stages of breeding, when risk of brood parasitism is highest, rather than during the nestling stage. On the other hand, general alarm calls (chips) are produced throughout the nesting cycle and are also used in conspecific interactions unrelated to nesting. We hypothesized that context shapes responses prior to breeding as well, such that yellow warblers without a mate and active nest would be less likely to respond to playbacks that simulate brood parasitism risk. To test this hypothesis, we presented playbacks of two nest threats, cowbirds (brood parasite) and blue jays (Cyanocitta cristata; nest predator), on territories of unmated male warblers (unpaired) and male warblers with a known mate (paired). We found that unpaired males were unresponsive toward playbacks indicating nest threats, whereas paired males were significantly more aggressive and vocal toward these playbacks compared to control playbacks. However, both paired and unpaired males were vocally responsive toward chip calls, which are informative for males regardless of pairing status. Male yellow warblers appear to adjust their responses during the earliest stages of breeding depending on the contextual relevance of specific threat stimuli, and together with prior studies, our work further supports that referential seet calls are associated with stage‐specific risk of brood parasitism.

     
    more » « less