skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Externally Pumped Photonic Chip‐Based Ultrafast Raman Soliton Source
Abstract

The advantages of low cost, compact size, and reduced power consumption makes a photonic chip‐based ultrafast laser source an appealing technology for diverse applications such as all‐optical signal processing, frequency metrology, spectroscopy, and sensing. To date, on‐chip ultrafast sources are typically generated by microresonator‐based Kerr‐comb solitons, which require precise phase tuning and frequency agile lasers to access the soliton state. Here, this work reports the first experimental demonstration of an externally pumped on‐chip ultrafast soliton laser source based on Raman soliton self‐frequency shift. By capitalizing on strong optical nonlinearity and versatile dispersion control in Ge28Sb12Se60chalcogenide glass waveguides, 185 fs duration Raman soliton generation has been demonstrated, possessing continuous wavelength tunability from 1589 to 1807 nm with signal‐to‐noise ratios consistently exceeding 65 dB. The source operates with pump pulse energies as low as 1.08 pJ, representing over three orders of magnitude improvement compared to fiber‐based Raman soliton sources. In addition, the generated solitons exhibit excellent spectral purity and stability free from parasitic sidebands. These experimental results are further validated by theoretical analysis, revealing insights into the soliton dynamics and critical device design guidelines. This work therefore enables a new class of broadly tunable, energy‐efficient, compact, and potentially cost‐effective on‐chip ultrafast laser sources.

 
more » « less
PAR ID:
10453445
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
15
Issue:
2
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microresonator-based soliton generation promises chip-scale integration of optical frequency combs for applications spanning from time keeping to frequency synthesis. Access to the soliton repetition rate is a prerequisite for those applications. While miniaturized cavities harness Kerr nonlinearity and enable terahertz soliton repetition rates, such high rates are not amenable to direct electronic detection. Here, we demonstrate hybrid Kerr and electro-optic microcombs using a lithium niobate thin film that exhibits both Kerr and Pockels nonlinearities. By interleaving the high-repetition-rate Kerr soliton comb with the low-repetition-rate electro-optic comb on the same waveguide, wide Kerr soliton mode spacing is divided within a single chip, allowing for direct electronic detection and feedback control of the soliton repetition rate. Our work establishes an integrated approach to electronically access terahertz solitons, paving the way for building chip-scale referenced comb sources.

     
    more » « less
  2. Soliton microcombs provide a chip-based, octave-spanning source for self-referencing and optical metrology. We use a silicon nitride integrated photonics foundry to manufacture 280 single-chip solutions of octave-spanning microcombs on a wafer. By group-velocity dispersion (GVD) engineering with the waveguide cross section, we shape the soliton spectrum for dispersive-wave spectral enhancements at the frequencies for f-2f self-referencing. Moreover, we demonstrate the other considerations, including models for soliton spectrum design, ultra-broadband resonator external coupling, low-loss edge couplers, and the nonlinear self-interactions of few-cycle solitons. To cover the fabrication tolerance, we systematically scan 336 parameter sets of resonator width and radius, ensuring at least one device on each chip can yield an octave-spanning comb with an electronically detectable carrier-envelope offset frequency, which has been supported by our experiment. Our design and testing process permit highly repeatable creation of single-chip solutions of soliton microcombs optimized for pump operation ∼100 mW and high comb mode power for f-2f detection, which is the central component of a compact microsystem for optical metrology.

     
    more » « less
  3. Abstract

    Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking, precision spectroscopy and time-frequency standards. The dynamics for the dissipative soliton generation, however, are intrinsically intertwined with thermal nonlinearities, limiting the soliton generation parameter map and statistical success probabilities of the solitary state. Here, via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation, we demonstrate stable Kerr soliton singlet formation and soliton bursts. First, we access a new soliton existence range with an inverse-sloped Kerr soliton evolution—diminishing soliton energy with increasing pump detuning. Second, we achieve deterministic transitions from Turing-like comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states. This is achieved by avoiding subcomb overlaps at lower pump power, with near-identical singlet soliton comb generation over twenty instances. Third, with the red-detuned pump entrance route enabled, we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise. The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode, aided by the auxiliary laser and matching well with our numerical simulations. Enabled by the auxiliary-assisted frequency comb dynamics, we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations. Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.

     
    more » « less
  4. Abstract

    Millimetre-wave (mmWave) technology continues to draw great interest due to its broad applications in wireless communications, radar, and spectroscopy. Compared to pure electronic solutions, photonic-based mmWave generation provides wide bandwidth, low power dissipation, and remoting through low-loss fibres. However, at high frequencies, two major challenges exist for the photonic system: the power roll-off of the photodiode, and the large signal linewidth derived directly from the lasers. Here, we demonstrate a new photonic mmWave platform combining integrated microresonator solitons and high-speed photodiodes to address the challenges in both power and coherence. The solitons, being inherently mode-locked, are measured to provide 5.8 dB additional gain through constructive interference among mmWave beatnotes, and the absolute mmWave power approaches the theoretical limit of conventional heterodyne detection at 100 GHz. In our free-running system, the soliton is capable of reducing the mmWave linewidth by two orders of magnitude from that of the pump laser. Our work leverages microresonator solitons and high-speed modified uni-traveling carrier photodiodes to provide a viable path to chip-scale, high-power, low-noise, high-frequency sources for mmWave applications.

     
    more » « less
  5. Abstract

    Dissipative Kerr soliton microcombs in microresonators have enabled fundamental advances in chip-scale precision metrology, communication, spectroscopy, and parallel signal processing. Here we demonstrate polarization-diverse soliton transitions and deterministic switching dynamics of a self-stabilized microcomb in a strongly-coupled dispersion-managed microresonator driven with a single pump laser. The switching dynamics are induced by the differential thermorefractivity between coupled transverse-magnetic and transverse-electric supermodes during the forward-backward pump detunings. The achieved large soliton existence range and deterministic transitions benefit from the switching dynamics, leading to the cross-polarized soliton microcomb formation when driven in the transverse-magnetic supermode of the single resonator. Secondly, we demonstrate two distinct polarization-diverse soliton formation routes – arising from chaotic or periodically-modulated waveforms via pump power selection. Thirdly, to observe the cross-polarized supermode transition dynamics, we develop a parametric temporal magnifier with picosecond resolution, MHz frame rate and sub-ns temporal windows. We construct picosecond temporal transition portraits in 100-ns recording length of the strongly-coupled solitons, mapping the transitions from multiple soliton molecular states to singlet solitons. This study underpins polarization-diverse soliton microcombs for chip-scale ultrashort pulse generation, supporting applications in frequency and precision metrology, communications, spectroscopy and information processing.

     
    more » « less