Combination chemotherapy must strike a difficult balance between safety and efficacy. Current regimens suffer from poor therapeutic impact because drugs are given at their maximum tolerated dose (MTD), which compounds the toxicity risk and exposes tumors to non‐optimal drug ratios. A modular framework has been developed that selectively delivers drug combinations at synergistic ratios via tumor‐targeting aptamers for effective low‐dose treatment. A nucleolin‐recognizing aptamer was coupled to peptide scaffolds laden with precise ratios of doxorubicin (DOX) and camptothecin (CPT). This construct had an extremely low IC50(31.9 n
Entinostat is an oral small molecule inhibitor of class I histone deacetylases (HDAC), which has not previously been evaluated in pediatrics. We conducted a phase I trial to determine the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D), toxicity profile, pharmacokinetics (PK), and pharmacodynamics (PD) of entinostat in children with relapsed or refractory solid tumors including central nervous system (CNS) malignancies.
A rolling six dose escalation design evaluated two dose levels. Entinostat oral tablet formulation was administered once per week, four doses per 28‐day cycle. PK and PD studies were performed.
Twenty‐one eligible patients’ median (range) age was 14 years (6‐20). Six subjects were treated at 3 mg/m2dose level and 15 were treated in 4 mg/m2dose level. The study included patients with CNS tumors (n = 12), sarcomas (n = 6), or other solid tumors (n = 3). Eight patients were not fully evaluable for toxicity due to progression of disease prior to receiving the required percentage of protocol therapy. No cycle one dose‐limiting toxicity (DLT) was observed at either dose level. A three‐fold higher area under the curve (AUC) was achieved in our cohort compared to adults using a similar dosing schedule. The PD studies showed increase in acetylated lysine in peripheral blood leukocytes at both doses.
Entinostat was well tolerated with no DLT observed. All patients experienced progression within the first two cycles, except one patient with ependymoma with stable disease. Based on PK and PD, the R2PD in pediatric patients with solid tumors is 4 mg/m2orally administered once weekly.
- PAR ID:
- 10453463
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Pediatric Blood & Cancer
- Volume:
- 68
- Issue:
- 4
- ISSN:
- 1545-5009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract m ) against MDA‐MB‐231 breast cancer cells in vitro, and exhibited in vivo efficacy at micro‐dose injections (500 and 350 μg kg−1 dose−1of DOX and CPT, respectively) that are 20–30‐fold lower than their previously‐reported MTDs. This approach represents a generalizable strategy for the safe and consistent delivery of combination drugs in oncology. -
Abstract Combination chemotherapy must strike a difficult balance between safety and efficacy. Current regimens suffer from poor therapeutic impact because drugs are given at their maximum tolerated dose (MTD), which compounds the toxicity risk and exposes tumors to non‐optimal drug ratios. A modular framework has been developed that selectively delivers drug combinations at synergistic ratios via tumor‐targeting aptamers for effective low‐dose treatment. A nucleolin‐recognizing aptamer was coupled to peptide scaffolds laden with precise ratios of doxorubicin (DOX) and camptothecin (CPT). This construct had an extremely low IC50(31.9 n
m ) against MDA‐MB‐231 breast cancer cells in vitro, and exhibited in vivo efficacy at micro‐dose injections (500 and 350 μg kg−1 dose−1of DOX and CPT, respectively) that are 20–30‐fold lower than their previously‐reported MTDs. This approach represents a generalizable strategy for the safe and consistent delivery of combination drugs in oncology. -
Abstract While systemic immuno‐oncology therapies have shown remarkable success, only a limited subset of patients benefit from them. The Click Activated Protodrugs Against Cancer (CAPAC) platform is a click chemistry‐based approach that activates cancer drugs at a specific tumor with minimal systemic toxicity. The CAPAC Platform is agnostic to tumor characteristics that can vary across patients and hence applicable to several types of tumors. The benefits of SQ3370 (lead candidate of CAPAC) are described to achieve systemic anti‐tumor responses in mice bearing two tumors. SQ3370 consists of a biopolymer, injected in a single lesion, followed by systemic doses of an attenuated protodrug of doxorubicin (Dox). SQ3370 is well‐tolerated at 5.9‐times the maximum dose of conventional Dox, increased survival by 63% and induces a systemic anti‐tumor response against injected and non‐injected lesions. The sustained anti‐tumor response also correlates with immune activation measured at both lesions. SQ3370 can potentially benefit patients with micro‐metastatic lesions.
-
Abstract Introduction WEE1 is a serine kinase central to the G2checkpoint. Inhibition of WEE1 can lead to cell death by permitting cell‐cycle progression despite unrepaired DNA damage. AZD1775 is a WEE1 inhibitor that is in clinical development for children and adults with cancer.
Methods AZD1775 was tested using a dose of 120 mg/kg administered orally for days 1 to 5. Irinotecan was administered intraperitoneally at a dose of 2.5 mg/kg for days 1 to 5 (one hour after AZD1775 when used in combination). AZD1775 and irinotecan were studied alone and in combination in neuroblastoma (
n = 3), osteosarcoma (n = 4), and Wilms tumor (n = 3) xenografts.Results AZD1775 as a single agent showed little activity. Irinotecan induced objective responses in two neuroblastoma lines (PRs), and two Wilms tumor models (CR and PR). The combination of AZD1775 + irinotecan‐induced objective responses in two neuroblastoma lines (PR and CR) and all three Wilms tumor lines (CR and 2 PRs). The objective response measure improved compared with single‐agent treatment for one neuroblastoma (PR to CR), two osteosarcoma (PD1 to PD2), and one Wilms tumor (PD2 to PR) xenograft lines. Of note, the combination yielded CR (
n = 1) and PR (n = 2) in all the Wilms tumor lines. The event‐free survival was significantly longer for the combination compared with single‐agent irinotecan in all models tested. The magnitude of the increase was greatest in osteosarcoma and Wilms tumor xenografts.Conclusions AZD1775 potentiates the effects of irinotecan across most of the xenograft lines tested, with effect size appearing to vary across tumor panels.
-
Abstract Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.