skip to main content


Title: Identifying weather regimes for regional‐scale stochastic weather generators
Abstract

Weather regime based stochastic weather generators (WR‐SWGs) have recently been proposed as a tool to better understand multi‐sector vulnerability to deeply uncertain climate change. WR‐SWGs can distinguish and simulate different types of climate change that have varying degrees of uncertainty in future projections, including thermodynamic changes (e.g., rising temperatures, Clausius‐Clapeyron scaling of extreme precipitation) and dynamic changes (e.g., shifting circulation and storm tracks). These models require the accurate identification of WRs that are representative of both historical and plausible future patterns of atmospheric circulation, while preserving the complex space–time variability of weather processes. This study proposes a novel framework to identify such WRs based on WR‐SWG performance over a broad geographic area and applies this framework to a case study in California. We test two components of WR‐SWG design, including the method used for WR identification (Hidden Markov Models (HMMs) vs.K‐means clustering) and the number of WRs. For different combinations of these components, we assess performance of a multi‐site WR‐SWG using 14 metrics across 13 major California river basins during the cold season. Results show that performance is best using a small number of WRs (4–5) identified using an HMM. We then juxtapose the number of WRs selected based on WR‐SWG performance against the number of regimes identified using metastability analysis of atmospheric fields. Results show strong agreement in the number of regimes between the two approaches, suggesting that the use of metastable regimes could inform WR‐SWG design. We conclude with a discussion of the potential to expand this framework for additional WR‐SWG design parameters and spatial scales.

 
more » « less
Award ID(s):
1702273
NSF-PAR ID:
10453469
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
41
Issue:
4
ISSN:
0899-8418
Page Range / eLocation ID:
p. 2456-2479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vulnerability‐based frameworks are increasingly used to better understand water system performance under climate change. This work advances the use of stochastic weather generators for climate vulnerability assessments that simulate weather based on patterns of regional atmospheric flow (i.e., weather regimes) conditioned on global‐scale climate features. The model is semiparametric by design and includes (1) a nonhomogeneous Markov chain for weather regime simulation; (2) block bootstrapping and a Gaussian copula for multivariate, multisite weather simulation; and (3) modules to impose thermodynamic and dynamical climate change, including Clausius‐Clapeyron precipitation scaling, elevation‐dependent warming, and shifting dynamics of the El Niño–Southern Oscillation (ENSO). In this way, the model can be used to evaluate climate impacts on water systems based on hypotheses of dynamic and thermodynamic climate change. The model is developed and tested for cold‐season climate in the Tuolumne River Basin in California but is broadly applicable across the western United States. Results show that eight weather regimes exert strong influences over local climate in the Tuolumne Basin. Model simulations adequately preserve many of the historical statistics for precipitation and temperature across sites, including the mean, variance, skew, and extreme values. Annual precipitation and temperature are somewhat underdispersed, and precipitation spell statistics are negatively biased by 1‐2 days. For simulations of future climate, the model can generate a range of Clausius‐Clapeyron scaling relationships and modes of elevation‐dependent warming. Model simulations also suggest a muted response of Tuolumne climate to changes in ENSO variability.

     
    more » « less
  2. Abstract

    Future Arctic sea ice loss has a known impact on Arctic amplification (AA) and mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased variance in temperature over North America. In this study, we analyze results from two fully coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical runs averaged over the 1980–99 period for the control (CTL) or projected RCP8.5 values over the 2080–99 period for the experiment (EXP). Dominant large-scale meteorological patterns (LSMPs) are then identified using self-organizing maps applied to winter daily 500-hPa geopotential height anomalies () over North America. We investigate how sea ice loss (EXP − CTL) impacts the frequency of these LSMPs and, through composite analysis, the sensible weather associated with them. We find differences in LSMP frequency but no change in residency time, indicating there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift thethat characterize these LSMPs and their associated anomalies in potential temperature at 850 hPa. Impacts on precipitation anomalies are more localized and consistent with changes in anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights, demonstrating a role for thermodynamic, dynamic, and diabatic processes in sea ice impacts on atmospheric variability. Understanding these processes from a synoptic perspective is critical as some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss.

    Significance Statement

    The goal of this study is to understand how future Arctic sea ice loss might impact daily weather patterns over North America. We use a global climate model to produce one set of simulations where sea ice is similar to present conditions and another that represents conditions at the end of the twenty-first century. Daily patterns in large-scale circulation at roughly 5.5 km in altitude are then identified using a machine learning method. We find that sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer the surface. Our methodology allows us to probe more deeply into the mechanisms responsible for these changes, which provides a new way to understand how sea ice loss can impact the daily weather we experience.

     
    more » « less
  3. The framework of Representative Key Risks (RKRs) has been adopted by the Intergovernmental Panel on Climate Change Working Group II (WGII) to categorize, assess and communicate a wide range of regional and sectoral key risks from climate change. These are risks expected to become severe due to the potentially detrimental convergence of changing climate conditions with the exposure and vulnerability of human and natural systems. Other papers in this special issue treat each of eight RKRs holistically by assessing their current status and future evolution as a result of this convergence. However, in these papers, such assessment cannot always be organized according to a systematic gradation of climatic changes. Often the big-picture evolution of risk has to be extrapolated from either qualitative effects of “low”, “medium” and “high” warming, or limited/focused analysis of the consequences of particular mitigation choices (e.g., benefits of limiting warming to 1.5 or 2C), together with consideration of the socio-economic context and possible adaptation choices. In this study we offer a representation – as systematic as possible given current literature and assessments – of the future evolution of the hazard components of RKRs. We identify the relevant hazards for each RKR, based upon the WGII authors’ assessment, and we report on their current state and expected future changes in magnitude, intensity and/or frequency, linking these changes to Global Warming Levels (GWLs) to the extent possible. We draw on the assessment of changes in climatic impact-drivers relevant to RKRs described in the 6th Assessment Report by Working Group I supplemented when needed by more recent literature. For some of these quantities - like regional trends in oceanic and atmospheric temperature and precipitation, some heat and precipitation extremes, permafrost thaw and Northern Hemisphere snow cover - a strong and quantitative relationship with increasing GWLs has been identified. For others - like frequency and intensity of tropical cyclones and extra-tropical storms, and fire weather - that link can only be described qualitatively. For some processes - like the behavior of ice sheets, or changes in circulation dynamics - large uncertainties about the effects of different GWLs remain, and for a few others - like ocean pH and air pollution - the composition of the scenario of anthropogenic emissions is most relevant, rather than the warming reached. In almost all cases, however, the basic message remains that every small increment in CO2 concentration in the atmosphere and associated warming will bring changes in climate phenomena that will contribute to increasing risk of impacts on human and natural systems, in the absence of compensating changes in these systems’ exposure and vulnerability, and in the absence of effective adaptation. Our picture of the evolution of RKR-relevant climatic impact-drivers complements and enriches the treatment of RKRs in the other papers in at least two ways: by filling in their often only cursory or limited representation of the physical climate aspects driving impacts, and by providing a fuller representation of their future potential evolution, an important component – if never the only one – of the future evolution of risk severity. 
    more » « less
  4. Abstract Observational evidence shows changes to North American weather regime occurrence depending on the strength of the lower-stratospheric polar vortex. However, it is not yet clear how this occurs or to what extent an improved stratospheric forecast would change regime predictions. Here we analyze four North American regimes at 500 hPa, constructed in principal component (PC) space. We consider both the location of the regimes in PC space and the linear regression between each PC and the lower-stratospheric zonal-mean winds, yielding a theory of which regime transitions are likely to occur due to changes in the lower stratosphere. Using a set of OpenIFS simulations, we then test the effect of relaxing the polar stratosphere to ERA-Interim on subseasonal regime predictions. The model start dates are selected based on particularly poor subseasonal regime predictions in the European Centre for Medium-Range Weather Forecasts CY43R3 hindcasts. While the results show only a modest improvement to the number of accurate regime predictions, there is a substantial reduction in Euclidean distance error in PC space. The average movement of the forecasts within PC space is found to be consistent with expectation for moderate-to-large lower-stratospheric zonal wind perturbations. Overall, our results provide a framework for interpreting the stratospheric influence on North American regime behavior. The results can be applied to subseasonal forecasts to understand how stratospheric uncertainty may affect regime predictions, and to diagnose which regime forecast errors are likely to be related to stratospheric errors. Significance Statement Predicting the weather several weeks ahead is a major challenge with large potential benefits to society. The strength of the circulation more than 10 km above the Arctic during winter (i.e., the polar vortex) is one source of predictability. This study investigates how forecast error and uncertainty in the polar vortex can impact predictions of large-scale weather patterns called “regimes” over North America. Through statistical analysis of observations and experiments with a weather forecast model, we develop an understanding of which regime changes are more likely to be due to changes in the polar vortex. The results will help forecasters and researchers understand the contribution of the stratosphere to changes in weather patterns, and in assessing and improving weather forecast models. 
    more » « less
  5. Abstract

    Weather regimes defined through cluster analysis concisely categorize the anomalous regional circulation pattern on any given day. Owing to their persistence and low dimensionality, regimes are increasingly used in subseasonal-to-seasonal prediction and in analysis of climate variability and change. However, a limitation of existing regime classifications for North America is their seasonal dependence, with most existing studies defining regimes for winter only. Here, we normalize the seasonal cycle in daily geopotential height variance and use empirical orthogonal function analysis combined withk-means clustering to define a new set of year-round North American weather regimes: the Pacific Trough, Pacific Ridge, Alaskan Ridge, and Greenland High regimes. We additionally define a “No Regime” state to represent conditions close to climatology. To demonstrate the robustness of the classification, a thorough assessment of the sensitivity of the clustering solution to various methodological choices is provided. The median persistence of all four regimes, obtained without imposing a persistence criterion, is found to be one week, approximately 3 times longer than the median persistence of the No Regime state. Regime-associated temperature and precipitation anomalies are reported, together with the relationship between the regimes and modes of climate variability. We also quantify historical trends in the frequency of the regimes since 1979, finding a decrease in the annual frequency of the Pacific Trough regime and an increase in the summertime frequency of the Greenland High regime. This study serves as a foundation for the future use of these regimes in a variety of weather and climate applications.

    Significance Statement

    Weather regimes provide a simple way of classifying daily large-scale regional weather patterns into a few predefined types. Existing methods usually define regimes for a specific season (typically winter), which limits their use, or provides only a minimal assessment of their robustness. In this study, we objectively quantify four weather regimes for use year-round over North America, while we classify near-normal conditions as No Regime. The four regimes represent persistent large-scale weather types that last for about a week and occasionally much longer. Our new classification can be applied to subseasonal-to-seasonal forecasts and climate model output to diagnose recurrent weather types across the North American continent.

     
    more » « less