skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying weather regimes for regional‐scale stochastic weather generators
Abstract Weather regime based stochastic weather generators (WR‐SWGs) have recently been proposed as a tool to better understand multi‐sector vulnerability to deeply uncertain climate change. WR‐SWGs can distinguish and simulate different types of climate change that have varying degrees of uncertainty in future projections, including thermodynamic changes (e.g., rising temperatures, Clausius‐Clapeyron scaling of extreme precipitation) and dynamic changes (e.g., shifting circulation and storm tracks). These models require the accurate identification of WRs that are representative of both historical and plausible future patterns of atmospheric circulation, while preserving the complex space–time variability of weather processes. This study proposes a novel framework to identify such WRs based on WR‐SWG performance over a broad geographic area and applies this framework to a case study in California. We test two components of WR‐SWG design, including the method used for WR identification (Hidden Markov Models (HMMs) vs.K‐means clustering) and the number of WRs. For different combinations of these components, we assess performance of a multi‐site WR‐SWG using 14 metrics across 13 major California river basins during the cold season. Results show that performance is best using a small number of WRs (4–5) identified using an HMM. We then juxtapose the number of WRs selected based on WR‐SWG performance against the number of regimes identified using metastability analysis of atmospheric fields. Results show strong agreement in the number of regimes between the two approaches, suggesting that the use of metastable regimes could inform WR‐SWG design. We conclude with a discussion of the potential to expand this framework for additional WR‐SWG design parameters and spatial scales.  more » « less
Award ID(s):
1702273
PAR ID:
10453469
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
41
Issue:
4
ISSN:
0899-8418
Format(s):
Medium: X Size: p. 2456-2479
Size(s):
p. 2456-2479
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is widely agreed that subseasonal-to-seasonal (S2S) predictability arises from the atmospheric initial state during early lead times and from the land and ocean during long lead times. We test this hypothesis for the large-scale mid-latitude atmosphere by training numerous XGBoost models to predict weather regimes (WRs) over North America at 1-to-8-week lead times. Each model uses a different predictor from one Earth system component (atmosphere, ocean, or land) sourced from reanalysis. According to the models, the atmosphere provides more predictability during the first two forecast weeks, and the three components performed similarly afterward. However, the skill and sources of predictability are highly dependent on the season and target WR. Our results show greater WR predictability in fall and winter, particularly for the Pacific Trough and Pacific Ridge regimes, driven primarily by the ocean (e.g., El Niño-Southern Oscillation and sea ice). For the Pacific Ridge in winter, the stratosphere also contributes significantly to predictability across most S2S lead times. Additionally, the initial large-scale tropospheric structure (encompassing the tropics and extra-tropics, e.g., Madden-Julian Oscillation) and soil conditions play a relevant role—most notably for the Greenland High regime in winter. This study highlights previously identified sources of predictability for the large-scale atmosphere and gives insight into new sources for future study. Given how closely linked WRs are to surface precipitation and temperature anomalies, storm tracks, and extreme events, the study results contribute to improving S2S prediction of surface weather. 
    more » « less
  2. Abstract Vulnerability‐based frameworks are increasingly used to better understand water system performance under climate change. This work advances the use of stochastic weather generators for climate vulnerability assessments that simulate weather based on patterns of regional atmospheric flow (i.e., weather regimes) conditioned on global‐scale climate features. The model is semiparametric by design and includes (1) a nonhomogeneous Markov chain for weather regime simulation; (2) block bootstrapping and a Gaussian copula for multivariate, multisite weather simulation; and (3) modules to impose thermodynamic and dynamical climate change, including Clausius‐Clapeyron precipitation scaling, elevation‐dependent warming, and shifting dynamics of the El Niño–Southern Oscillation (ENSO). In this way, the model can be used to evaluate climate impacts on water systems based on hypotheses of dynamic and thermodynamic climate change. The model is developed and tested for cold‐season climate in the Tuolumne River Basin in California but is broadly applicable across the western United States. Results show that eight weather regimes exert strong influences over local climate in the Tuolumne Basin. Model simulations adequately preserve many of the historical statistics for precipitation and temperature across sites, including the mean, variance, skew, and extreme values. Annual precipitation and temperature are somewhat underdispersed, and precipitation spell statistics are negatively biased by 1‐2 days. For simulations of future climate, the model can generate a range of Clausius‐Clapeyron scaling relationships and modes of elevation‐dependent warming. Model simulations also suggest a muted response of Tuolumne climate to changes in ENSO variability. 
    more » « less
  3. We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits. 
    more » « less
  4. Abstract Electromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by ≈40 dB compared to conventional strip waveguides, corresponding to ≈100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse–magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices. 
    more » « less
  5. Abstract The evolved massive star populations of the Local Group galaxies are generally thought to be well understood. However, recent work has suggested that the Wolf–Rayet (WR) content of M31 may have been underestimated. We therefore began a pilot project to search for new WRs in M31 and to reexamine the completeness of our previous WR survey, finished almost a decade prior. Our improved imaging data and spectroscopic follow-up confirmed 19 new WRs across three small fields in M31. These newly discovered WRs are generally fainter than the previously known sample due to slightly increased reddening as opposed to intrinsic faintness. From these findings, we estimate that there are another ∼60 WRs left to be discovered in M31; however, the overall ratio of WN-type (nitrogen-rich) to WC-type (carbon-rich) WRs remains unchanged with our latest additions to the M31 WR census. We are in the process of extending this pilot WR survey to include the rest of M31, and a more complete population will be detailed in our future work. 
    more » « less