skip to main content


Title: Arctic chironomids of the northwest North Atlantic reflect environmental and biogeographic gradients
Abstract Aim

While we understand broad climate drivers of insect distributions throughout the Arctic, less is known about the role of spatial processes in determining these relationships. As such, there is a need to understand how spatial controls may influence our interpretations of chironomid environment relationships. Here, we evaluated whether the distribution of chironomids followed spatial gradients, or were primarily controlled by environmental factors.

Location

Eastern Canadian Arctic, Greenland, Iceland.

Taxon

Non‐biting midges (Chironomidae).

Methods

We examined chironomid assemblages from 239 lakes in the western North Atlantic Arctic region (specifically from the Arctic Archipelago of Canada, two parts of west Greenland (the southwest and central west) and northwest Iceland). We used a combination of unconstrained ordination (Self Organizing Maps); a simple method with only one data matrix (community data), and constrained ordination (Redundancy Analysis); a canonical ordination with two datasets where we extracted structure of community related to environmental data. These methods allowed us to model chironomid assemblages across a large bioregional dimension and identify specific differences between regions that were defined by common taxa represented across all regions in high frequencies, as well as rare taxa distinctive to each region found in low frequencies. We then evaluated the relative importance of spatial processes versus local environmental factors.

Results

We find that environmental controls explained the largest amount of variation in chironomid assemblages within each region, and that spatial controls are only significant when crossing between regions. Broad‐scale biogeographic effects on chironomid distributions are reflected by the distinct differences among chironomid assemblages of Iceland, central‐west Greenland, and eastern Canada, defined by the presence of certain common and low‐frequency, rare taxa for each region. Environmental gradients, especially temperature, defined species distributions within each region, whereas spatial processes combine with environmental gradients in determining what mix of species characterizes each broad and geographically distinct island region in our study.

Main conclusions

While biogeographic context is important for defining interpretations of environmental controls on species distributions, the primary control on distributions within regions is environmental. These influences are fundamentally important for reconstructing past environmental change and better understanding historical distributions of these insect indicators.

 
more » « less
NSF-PAR ID:
10453474
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
48
Issue:
3
ISSN:
0305-0270
Page Range / eLocation ID:
p. 511-525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes chironomid species assemblage data and air temperature estimates from 400+ lakes across northern North America, Greenland, Iceland, and Svalbard to inform interpretations of Holocene subfossil chironomid assemblages used in paleolimnological reconstruction. This calibration-set was developed by re-identifying and taxonomically harmonizing chironomids in previously described surface sediment samples, with identifications made at finer taxonomic resolution than in original publications (which are cited in the publication describing this dataset, Medeiros et al. 2022 Quaternary Science Reviews, and should be cited by dataset users). Site summer air temperatures are newly estimated with a consistent method using the WorldClim 2.1 gridded bioclimatic dataset. The large geographic coverage of this dataset is intended to provide climatic analogs for a wide range of Holocene climates in the northwest North Atlantic region and North American Arctic, including Greenland. For many of these regions, modern calibration data for paleoclimate proxies are sparse despite keen interest in paleoclimate reconstructions from high latitudes. Dataset users should consult and cite the following source publication: Medeiros, A.S., Chipman, M., Francis, D.R., Hamerlik, L., Langdon, P., Puleo, P.J.K., Schellinger, G., Steigleder, R., Walker, I.R., Woodroffe, S., and Axford, Y. 2022. A continent-scale chironomid training set for reconstructing arctic temperatures. Quaternary Science Reviews 294, 107728. DOI 10.1016/j.quascirev.2022.107728. 
    more » « less
  2. Frontalini, Fabrizio (Ed.)
    Ostracoda (bivalved Crustacea) comprise a significant part of the benthic meiofauna in the Pacific-Arctic region, including more than 50 species, many with identifiable ecological tolerances. These species hold potential as useful indicators of past and future ecosystem changes. In this study, we examined benthic ostracodes from nearly 300 surface sediment samples, >34,000 specimens, from three regions—the northern Bering, Chukchi and Beaufort Seas—to establish species’ ecology and distribution. Samples were collected during various sampling programs from 1970 through 2018 on the continental shelves at 20 to ~100m water depth. Ordination analyses using species’ relative frequencies identified six species, Normanicythere leioderma , Sarsicytheridea bradii , Paracyprideis pseudopunctillata , Semicytherura complanata , Schizocythere ikeyai , and Munseyella mananensis , as having diagnostic habitat ranges in bottom water temperatures, salinities, sediment substrates and/or food sources. Species relative abundances and distributions can be used to infer past bottom environmental conditions in sediment archives for paleo-reconstructions and to characterize potential changes in Pacific-Arctic ecosystems in future sampling studies. Statistical analyses further showed ostracode assemblages grouped by the summer water masses influencing the area. Offshore-to-nearshore transects of samples across different water masses showed that complex water mass characteristics, such as bottom temperature, productivity, as well as sediment texture, influenced the relative frequencies of ostracode species over small spatial scales. On the larger biogeographic scale, synoptic ordination analyses showed dominant species— N . leioderma (Bering Sea), P . pseudopunctillata (offshore Chukchi and Beaufort Seas), and S . bradii (all regions)—remained fairly constant over recent decades. However, during 2013–2018, northern Pacific species M . mananensis and S . ikeyai increased in abundance by small but significant proportions in the Chukchi Sea region compared to earlier years. It is yet unclear if these assemblage changes signify a meiofaunal response to changing water mass properties and if this trend will continue in the future. Our new ecological data on ostracode species and biogeography suggest these hypotheses can be tested with future benthic monitoring efforts. 
    more » « less
  3. Abstract Questions

    How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient?

    Location

    1700‐km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia.

    Methods

    The Braun‐Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest–tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors.

    Results

    Clear, mostly non‐linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest–tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age.

    Conclusions

    Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground‐based vegetation data for satellite‐based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on‐going climate change.

     
    more » « less
  4. Abstract Aim

    Lakes in the Ecuadorean Andes span different altitudinal and climatic regions, from inter Andean plateau to the high‐elevation páramo, which differ in their historical evolution in the several centuries since the pioneering Humboldt expeditions. Here, we evaluate temporal and spatial patterns of change in diatom assemblages between historical (palaeolimnological) and modern times.

    Location

    Ecuadorean Andes

    Methods

    We compared historical (pre‐1850) and modern (2017) diatom assemblages from 21 lakes and determined the relative role of environmental (water chemistry and climate) and spatial factors (distance‐based Moran's eigenvectors maps) on both assemblages using non‐metric multidimensional scaling (NMDS) with environmental fitting. In addition, we used redundancy analysis (RDA) with variance partitioning to estimate the historical (measured using downcore assemblage composition) effects on modern diatom assemblages and identified diatom species that contributed most to dissimilarity between the two times.

    Results

    Diatom changes between the two time points were limited across the group of lakes, as indicated by theNMDSordination. Variance partitioning indicated that modern diatom assemblages were affected by environmental and spatial effects, but with non‐significant effects of past diatom species composition. Ordination results showed that variables related to elevation and water chemistry affected both modern and historical diatom assemblages. Diatom species with the best fit onNMDSaxes (i.e. >70%) were influenced by elevation and climatic variables. The most distinctive change between the two time periods was the higher relative abundance of planktic diatom species in top‐core assemblages of some lakes, but in a highly variable fashion across gradients of increased elevation and water depth.

    Main conclusions

    Landscape palaeolimnological analyses of varied Ecuadorean Andean lakes demonstrate both environmental and spatial controls on diatom metacommunities. The multi‐faceted ecological control of the altitudinal gradient on both historic and contemporary diatom assemblages suggests species sorting and dispersal constraints operating at centennial time‐scale. Although a few individual lakes show substantive change between the 1850s and today, the majority of lakes do not, and the analysis suggests the resilience of lakes at a regional scale. We emphasize the potential of diatom palaeolimnological approaches in biogeography to test ecologically relevant hypotheses of the mechanisms driving recent limnological change in high‐elevation tropical lakes.

     
    more » « less
  5. Abstract Aim

    Pollen assemblages are commonly used to reconstruct past climates yet have not yet been used to reconstruct past human activities, including deforestation. We aim to assess (i) how pollen assemblages vary across biogeographic and environmental gradients, (ii) the source area of pollen assemblages from lake sediment samples and (iii) which pollen taxa can best be used to quantify deforested landscapes.

    Location

    Amazonia.

    Taxon

    Plantae.

    Methods

    Pollen assemblages (N = 65) from mud‐water interface samples (representing modern conditions) of lake sediment cores were compared with modern gradients of temperature, precipitation and elevation. Pollen assemblages were also compared with local‐scale estimates of forest cover at 1, 2, 5, 10, 20 and 40 km buffers around each lake.

    Results

    Over 250 pollen types were identified in the samples, and pollen assemblages were able to accurately differentiate biogeographic regions across the basin, corresponding with gradients in temperature and precipitation. Poaceae percentages were the best predictor of deforestation, and had a significant negative relationship with forest cover estimates. These relationships were strongest for the 1 km buffer area, weakening as buffer sizes increased.

    Main conclusions

    The diverse Amazonian pollen assemblages strongly reflect environmental gradients, and percentages of Poaceae best reflect local‐scale variability in forest cover. Our results of modern pollen‐landscape relationships can be used to provide a foundation for quantitative reconstructions of climate and deforestation in Amazonia.

     
    more » « less