Fish migrate for varied reasons, including to avoid predators and to access feeding, spawning, and nursery habitats, behaviors that enhance their survival and reproductive rates. However, the migratory ecology of many important fishes, especially those in river–floodplain ecosystems, remains poorly understood. One fish of the Amazon Basin whose migratory behavior is poorly understood is the catfish Pseudoplatystoma fasciatum. Here, we used otolith elemental microchemistry to characterize the migration ecology of P. fasciatum in the Amazon Basin. The main research questions of this study were: (1) does P. fasciatum move between waters with different Sr isotopic signatures (87Sr/86Sr) and chemical compositions? (2) What distance do they migrate? (3) Is the migration of P. fasciatum related to age? And (4) does P. fasciatum migrate mainly upstream, downstream, or in both directions? We assessed whether P. fasciatum migrates between waters with different 87Sr/86Sr values, comparing the Sr isotopic signature of otolith transects of each individual with the range of Sr isotopic signatures within the respective rivers. We found that 34% of the 71 fish analyzed migrated between rivers with different Sr isotopic signatures and 66% did not. The mean migration distance migrated was 126 km, with most specimens migrating between 72 and 237 km. Apparently, no fish of age one or age six or older migrated. All fish that migrated were between two and five years of age, with 20% of the specimens that migrated being two years old, 40% three years old, 30% four years old, and 20% five years old. Sixty-six percent of all individuals that migrated between rivers with different Sr signatures did so bidirectionally, while 33% moved unidirectionally. According to our definition of homing behavior in which fish migrated back to the same river where they were born, 41% of all fish that migrated displayed apparent homing behavior. Our findings provide insights into the migratory ecology of P. fasciatum, corroborating and refining knowledge reported in the literature. Our results on the migratory ecology of P. fasciatum have implications for sustainable fisheries conservation and management: conserving P. fasciatum requires habitat maintenance and suitable fishing practices in spawning and nursery habitats, and managers must consider large geographic areas for effective fishery management and conservation.
more »
« less
Harnessing the potential for otolith microchemistry to foster the conservation of Amazonian fishes
Abstract Freshwater environments host roughly half of the world’s fish diversity, much of which is concentrated in large, tropical river systems such as the Amazon. Fishes are critical to ecosystem functioning in the Amazon River basin but face increasing human threats. The basic biology of these species, and particularly migratory behaviour, remains poorly studied, in part owing to the difficulty associated with conducting tagging studies in remote tropical regions.Otolith microchemistry can circumvent logistical issues and is an increasingly important tool for studying fish life histories. However, this approach is still new in the Amazon, and its potential and limitations to inform fish conservation strategies remain unclear.Here, otolith microchemistry studies in the Amazon are reviewed, highlighting current possibilities, and several key factors that limit its use as a conservation tool in the Amazon are discussed. These include the dearth of spatiotemporal elemental data, poor understanding of environment–fish–otolith pathways, and insufficient funding, facilities, and equipment.A research initiative is proposed to harness the potential of this technique to support conservation in the Amazon. Key aspects of the proposal include recommendations for internal and external funding, which are critical to acquiring and maintaining technical staff, cutting‐edge equipment, and facilities, as well as fostering regular scientific meetings and working groups. Meetings can facilitate a systematic approach to investigating environment–otolith pathways, broadening the chemical baseline for most Amazonian tributaries, and exploring potential valuable elements.These outcomes are urgently needed to conserve biodiversity and ecosystem functioning in the Amazon, especially given threats such as widespread hydroelectric damming. The initiative proposed here could make otolith microchemistry an important, cost‐effective tool to inform and foster conservation in the Amazon, and act as a template for other imperilled tropical river basins, such as the Mekong and the Congo.
more »
« less
- Award ID(s):
- 1852113
- PAR ID:
- 10453479
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Aquatic Conservation: Marine and Freshwater Ecosystems
- Volume:
- 31
- Issue:
- 5
- ISSN:
- 1052-7613
- Page Range / eLocation ID:
- p. 1206-1220
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches.more » « less
-
Abstract Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.more » « less
-
Abstract Many management and conservation contexts can benefit from understanding relationships between species abundances, which can be used to improve predictions of species occurrence and abundance.We present conditional prediction as a tool to capture information about species abundances via residual covariance between species. From a fitted joint species distribution model, this framework produces a species coefficient matrix that contains relationships between species abundances. The species coefficients allow co‐observed species to be treated as a second set of predictors supplementing covariates in the model to improve prediction. We use simulations to demonstrate the potential benefits and limitations of conditional prediction across data types and species covariance before applying conditional prediction to two management contexts with real data.Simulations demonstrate that conditional prediction provides the largest benefits to continuous data and when there is residual covariance between many species.In our first application, we show that conditioning on other species improves in‐sample and out‐of‐sample predictions of fish and invertebrate species, including Atlantic cod. In our second application, we show that the species coefficient matrix can be used to identify bird species at risk of nest parasitism by Brown‐headed Cowbirds.Synthesis and applications. We present guidelines for using conditional prediction, which can help understand relationships between species abundances, improve predictions and inform conservation in a variety of contexts.more » « less
-
Abstract River managers strive to use the best available science to sustain biodiversity and ecosystem function. To achieve this goal requires consideration of processes at different scales. Metacommunity theory describes how multiple species from different communities potentially interact with local‐scale environmental drivers to influence population dynamics and community structure. However, this body of knowledge has only rarely been used to inform management practices for river ecosystems. In this article, we present a conceptual model outlining how the metacommunity processes of local niche sorting and dispersal can influence the outcomes of management interventions and provide a series of specific recommendations for applying these ideas as well as research needs. In all cases, we identify situations where traditional approaches to riverine management could be enhanced by incorporating an understanding of metacommunity dynamics. A common theme is developing guidelines for assessing the metacommunity context of a site or region, evaluating how that context may affect the desired outcome, and incorporating that understanding into the planning process and methods used. To maximize the effectiveness of management activities, scientists, and resource managers should update the toolbox of approaches to riverine management to reflect theoretical advances in metacommunity ecology. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsWater and Life > Conservation, Management, and AwarenessWater and Life > Methodsmore » « less
An official website of the United States government
