skip to main content

Title: Anti‐VEGF‐R2 Aptamer and RGD Peptide Synergize in a Bifunctional Hydrogel for Enhanced Angiogenic Potential

Hydrogels have gained interest for use in tissue regeneration and wound healing because of their absorbing and swelling properties as well as their ability to mimic the natural extracellular matrix. Their use in wound healing specifically may be in the form of a patch or wound dressing or they may be administered within the wound bed as a filler, gel in situ, to promote healing. Thiolated hyaluronic acid‐polyethylene diacrylate (tHA‐PEGDA) hydrogels are ideal for this purpose due to their short gelation times at physiological temperature and pH. But these hydrogels alone are not enough and require added components to gain bioactivity. In this work, RGD adhesion peptides and an antivascular endothelial growth factor receptor‐2 (VEGF‐R2) DNA aptamer are incorporated into a tHA‐PEGDA hydrogel to make a bifunctional hyaluronic acid hydrogel. RGD peptides promote attachment and growth of cells while the anti‐VEGF‐R2 DNA aptamer seems to improve cell viability, induce cell migration, and spur the onset of angiogenesis by tube formation by endothelial cells. This bifunctional hydrogel supports cell culture and has improved biological properties. The data suggest that these hydrogels can be used for advanced tissue regeneration applications such as in wound healing.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Bioscience
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM‐induced vessel co‐option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide‐functionalized gelatin hydrogel as a means to examine GBM–vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain‐mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87‐MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co‐option and regression preceding angiogenesis in vivo.

    more » « less
  2. Human mesenchymal stem cells (hMSCs) are instrumental in the wound healing process. They migrate to wounds from their native niche in response to chemical signals released during the inflammatory phase of healing. At the wound, hMSCs downregulate inflammation and regulate tissue regeneration. Delivering additional hMSCs to wounds using cell-laden implantable hydrogels has the potential to improve healing outcomes and restart healing in chronic wounds. For these materials to be effective, cells must migrate from the scaffold into the native tissue. This requires cells to traverse a step-change in material properties at the implant-tissue interface. Migration of cells in material with highly varying properties is not well characterized. We measure 3D encapsulated hMSC migration and remodeling in a well-characterized hydrogel with a step-change in stiffness. This cell-degradable hydrogel is composed of 4-arm poly(ethylene glycol)-norbornene cross-linked with an enzymatically-degradable peptide. The scaffold is made with two halves of different stiffnesses separated by an interface where stiffness changes rapidly. We characterize changes in structure and rheology of the pericellular region using multiple particle tracking microrheology (MPT). MPT measures Brownian motion of embedded particles and relates it to material rheology. We measure more remodeling in the soft region of the hydrogel than the stiff region on day 1 post-encapsulation and similar remodeling everywhere on day 6. In the interface region, we measure hMSC-mediated remodeling along the interface and migration towards the stiff side of the scaffold. These results can improve materials designed for cell delivery from implants to a wound to enhance healing. 
    more » « less
  3. Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.

    more » « less
  4. Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU–PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications.

    more » « less
  5. Abstract

    Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.

    more » « less