Confidence in model estimates of soil CO2flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data‐model fusion with modified versions of the CN‐SIM model and a 571‐day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These “lagged‐peak” samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest‐performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co‐metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth‐system models.
Lignin’s role in litter and soil organic carbon (SOC) decomposition remains contentious. Lignin decomposition was traditionally thought to increase during midstage litter decomposition, when cellulose occlusion by lignin began to limit mass loss. Alternatively, lignin decomposition could be greatest in fresh litter as a consequence of co‐metabolism, and lignin might decompose faster than bulk SOC. To test these competing hypotheses, we incubated 10 forest soils with C4grass litter (amended with13C‐labeled or unlabeled lignin) over 2 yr and measured soil respiration and its isotope composition. Early lignin decomposition was greatest in 5 of 10 soils, consistent with the co‐metabolism hypothesis. However, lignin decomposition peaked 6–24 months later in the other five soils, consistent with the substrate‐limitation hypothesis; these soils were highly acidic. Rates of lignin, litter, and SOC decomposition tended to converge over time. Cumulative lignin decomposition was never greater than SOC decomposition; lignin decomposition was significantly lower than SOC decomposition in six soils. Net nitrogen mineralization predicted lignin decomposition ratios relative to litter and SOC. Although the onset of lignin decomposition can indeed be rapid, lignin still presents a likely bottleneck in litter and SOC decomposition, meriting a reconsideration of lignin’s role in modern decomposition paradigms.
more » « less- NSF-PAR ID:
- 10453499
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 101
- Issue:
- 9
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Manganese (Mn) is a redox‐active micronutrient that has been shown to accelerate plant litter decomposition; however, the effect of Mn‐promoted decomposition on soil C storage is unclear. We present a novel biogeochemical model simulating how Mn bioavailability influences soil organic C (SOC) stocks in a soil profile (<50 cm) within a temperate forest. In our model, foliar Mn increased in response to increasing soluble Mn released through Mn‐oxide (birnessite) dissolution in mineral soil layers. The ensuing Mn enrichment in leaf litter redistributed Mn to the surface forest floor layer, promoted enzymatic oxidation of lignin, and decreased SOC stocks. Total SOC loss was partially mitigated by accumulation of lignin‐oxidation products as mineral‐associated organic C. We also explored how Mn‐driven changes to C storage interacted with effects of N deposition and warming. Nitrogen enrichment inhibited Mn‐dependent lignin degradation, increasing SOC stocks and weakening their dependence on Mn bioavailability. Warming stimulated decomposition and reduced C stocks but was less effective at low Mn bioavailability. Our model results suggest that SOC stocks are sensitive to Mn bioavailability because increased plant uptake redistributes Mn to surface soils where it can enhance litter decomposition. Based on our simulations, we predict that Mn becomes limiting to litter decomposition where Mn is poorly soluble. Depletion of bioavailable Mn or other cofactors that are critical to decomposition could limit the response of organic C stocks to warming over time, but quantitative projections of the role of Mn bioavailability in regulating decomposition requires additional measurements to constrain model uncertainties.
-
Abstract Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems.more » « less
-
Abstract Manganese (Mn) is an essential plant micronutrient that plays a critical role in the litter decomposition by oxidizing and degrading complex organic molecules. Previous studies report a negative correlation between Mn concentrations and carbon (C) storage in organic horizons and suggest that high Mn concentrations in leaf litter reduce soil C storage in forest ecosystems, presumably by stimulating the oxidation of lignin by fungal enzymes. Yet, the relationship between Mn and C in the litter layer and organic soil remains poorly understood and restricted to a few biomes, hampering our ability to improve mechanistic understanding of soil C accumulation. To examine plant‐soil interactions that underlie observed relationships between Mn and C across a wide range of biomes, we extracted biogeochemical data reported for plants and soils from the National Ecological Observatory Network (NEON) database. We found that increased C and nitrogen (N) storage in organic horizons were associated with declines in Mn concentrations across diverse ecosystems at the continental scale, and this relationship was associated with the degree of organic matter decomposition (i.e., Oi, Oe, and Oa). Carbon and N stocks were more strongly correlated with Mn than with climatic variables (i.e., temperature and precipitation). Foliar Mn was strongly correlated with foliar lignin, and both these parameters increased with a decrease in soil pH, indicating links between soil pH, foliar chemistry, and litter decomposability. Our observations suggest that increased Mn bioavailability and accumulation in foliage under moderately acidic soil conditions support fungal decomposition of lignin‐rich litter and contributes to lower soil C stocks.
-
We used incubations of soil and stable isotope measurements to measure lignin, litter, and SOC decomposition over an 18-month lab incubation and assessed their relationships with geochemical, microbial, N-related and climatic factors across 156 mineral soils collected from 20 National Ecological Observatory Network (NEON) sites, which span broad biophysical gradients (climate, soil, and vegetation type) across North America. The soils were collected in 2019. Lignin decomposition and biogeochemical variables were also measured in an approximately 12-month field incubation.more » « less