skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Title: Response to Channel Deepening of the Salinity Intrusion, Estuarine Circulation, and Stratification in an Urbanized Estuary

Modifications for navigation since the late 1800s have increased channel depth (H) in the lower Hudson River estuary by 10–30%, and at the mouth the depth has more than doubled. Observations along the lower estuary show that both salinity and stratification have increased over the past century. Model results comparing predredging bathymetry from the 1860s with modern conditions indicate an increase in the salinity intrusion of about 30%, which is roughly consistent with theH5/3scaling expected from theory for salt flux dominated by steady exchange. While modifications including a recent deepening project have been concentrated near the mouth, the changes increase salinity and threaten drinking water supplies more than 100 km landward. The deepening has not changed the responses to river discharge (Qr) of the salinity intrusion (~Qr−1/3) or mean stratification (Qr2/3). Surprisingly, the increase in salinity intrusion with channel deepening results in almost no change in the estuarine circulation. This contrasts sharply with local scaling based on local dynamics of anH2dependence, but it is consistent with a steady state salt balance that allows scaling of the estuarine circulation based on external forcing factors and is independent of depth. In contrast, the observed and modeled increases in stratification are opposite of expectations from the steady state balance, which could be due to reduction in mixing with loss of shallow subtidal regions. Overall, the mean shift in estuarine parameter space due to channel deepening has been modest compared with the monthly‐to‐seasonal variability due to tides and river discharge.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Page Range / eLocation ID:
p. 4784-4802
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A Finite Volume Community Ocean Model is used to investigate how wind impacts the circulation and evolution of a freshwater plume from Mississippi River diversion in the Lake Pontchartrain Estuary. Results show that northerly and southerly winds tend to stretch the plume in the east‐west directions, while easterly and westerly winds constrain the plume in the north‐south directions. Increasing wind magnitude tends to increase the total salt content of the estuary except under weak westerly wind (<6 m/s) during which salt content decreases. A no‐motion middepth interface is found (by the model and verified by the data), separating the top layer downwind flow and bottom layer upwind flow. Increasing wind magnitude can enhance the two‐layered flows and lower the no‐motion plane between the two opposite flows. Apparent small leakage of the river water through the diversion structure prior to its opening is found to impact the vertical structure of flows and salinity: Mixing is facilitated by the large amount of freshwater leaked into the lake prior to the opening of the diversion; wind‐driven gyres are diminished; the average potential energy demand, a quantity used to measure the vertical stratification, is reduced to very low values; more deviation from the quasi‐steady state balance tends to occur; and a total of 3.7 × 108kg of salt is reduced during the opening period of the Bonnet Carré Spillway. The Lake Pontchartrain Estuary is completely dominated by the river water within about 25 days, when salinity drops from an average value of 4 g/kg to essentially zero.

    more » « less
  2. Abstract

    The fate of discharges from small rivers and mountainous streams are little studied relative to the dynamics of large river plumes. Flows from small watersheds are episodic, forming transient low‐salinity surface plumes that vary tidally due to interaction of outflow inertia with buoyancy and ambient tidal currents. An implementation of the Regional Ocean Modeling System (ROMS v3.0), a three‐dimensional, free‐surface, terrain‐following numerical model, is applied to small river outflows (≤10 m3 s−1) entering a tidal ocean, where they form small plumes of scale ~103 m or smaller. Analysis of the momentum balance points to three distinct zones: (i) an inertia‐driven near field, where advection, pressure gradient, and vertical stress divergence control the plume dynamics, (ii) a buoyancy‐driven midfield, where pressure gradient, lateral stress divergence, and rotational accelerations are dominant, and (iii) an advective far field, where local accelerations induced by ambient tidal currents determine the fate of the river/estuarine discharge. The response of these small tidal plumes to different buoyancy forcing and outflow rate is explored. With increasing buoyancy, plumes change from narrow/elongated, bottom‐attached flows to radially expanding, surface‐layer flows. Weak outflow promotes stratification within the plume layer, and with stronger outflow, the plume layer becomes thinner and well‐mixed. When compared with prototypical large‐river plumes in which Coriolis effects are important, (i) in these small plumes, there is no bulge and no coastal buoyancy current, that is, shore contact is mostly absent, and (ii) the plume is strongly influenced by ambient tidal currents, forming a tidal plume that is deflected upcoast/downcoast from the river mouth.

    more » « less
  3. Abstract A salinity variance framework is used to study mixing in the Salish Sea, a large fjordal estuary. Output from a realistic numerical model is used to create salinity variance budgets for individual basins within the Salish Sea for 2017–19. The salinity variance budgets are used to quantify the mixing in each basin and estimate the numerical mixing, which is found to contribute about one-third of the total mixing in the model. Whidbey Basin has the most intense mixing, due to its shallow depth and large river flow. Unlike in most other estuarine systems previously studied using the salinity variance method, mixing in the Salish Sea is controlled by the river flow and does not exhibit a pronounced spring–neap cycle. A “mixedness” analysis is used to determine when mixed water is expelled from the estuary. The river flow is correlated with mixed water removal, but the coupling is not as tight as with the mixing. Because the mixing is so highly correlated with the river flow, the long-term average approximation M = Q r s out s in can be used to predict the mixing in the Salish Sea and Puget Sound with good accuracy, even without any temporal averaging. Over a 3-yr average, the mixing in Puget Sound is directly related to the exchange flow salt transport. 
    more » « less
  4. Abstract

    Dissolved organic matter (DOM) is a large and complex mixture of compounds with source inputs that differ with location, season, and environmental conditions. Here, we investigated drivers of DOM composition changes in a marsh‐dominated estuary off the southeastern United States. Monthly water samples were collected at a riverine and estuarine site from September 2015 to September 2016, and bulk, optical, and molecular analyses were conducted on samples before and after dark incubations. Results showed that river discharge was the primary driver changing the DOM composition at the mouth of the Altamaha River. For discharge higher than ~150 m3/s, dissolved organic carbon (DOC) concentrations and the terrigenous character of the DOM increased approximately linearly with river flow. For low discharge conditions, a clear signature of salt marsh‐derived compounds was observed in the river. At the head of Sapelo Sound, changes in DOM composition were primarily driven by river discharge and possibly by summer algae blooms. Microbial consumption of DOC was larger during periods of high discharge at both sites, potentially due to the higher mobilization and influx of fresh material to the system. The Georgia coast was hit by Hurricane Matthew in October 2016, which resulted in a large input of carbon to the estuary. The DOC concentration was ~2 times higher and DOM composition was more aromatic with a stronger terrigenous signature compared to the seasonal maximum observed earlier in the year during peak river discharge conditions. This suggests that extreme events notably impact DOM quantity and quality in estuarine regions.

    more » « less
  5. Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management. 
    more » « less