skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Modeling the mitral valve
Abstract

This work is concerned with modeling and simulation of the mitral valve, one of the four valves in the human heart. The valve is composed of leaflets, the free edges of which are supported by a system of chordae, which themselves are anchored to the papillary muscles inside the left ventricle. First, we examine valve anatomy and present the results of original dissections. These display the gross anatomy and information on fiber structure of the mitral valve. Next, we build a model valve following a design‐based methodology, meaning that we derive the model geometry and the forces that are needed to support a given load and construct the model accordingly. We incorporate information from the dissections to specify the fiber topology of this model. We assume the valve achieves mechanical equilibrium while supporting a static pressure load. The solution to the resulting differential equations determines the pressurized configuration of the valve model. To complete the model, we then specify a constitutive law based on a stress‐strain relation consistent with experimental data that achieves the necessary forces computed in previous steps. Finally, using the immersed boundary method, we simulate the model valve in fluid in a computer test chamber. The model opens easily and closes without leak when driven by physiological pressures over multiple beats. Further, its closure is robust to driving pressures that lack atrial systole or are much lower or higher than normal.

 
more » « less
NSF-PAR ID:
10453551
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Biomedical Engineering
Volume:
35
Issue:
11
ISSN:
2040-7939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic’s CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions. 
    more » « less
  2. Tissue engineering aims to overcome the current limitations of heart valves by providing a viable alternative using living tissue. Nevertheless, the valves constructed from either decellularized xenogeneic or purely biologic scaffolds are unable to withstand the hemodynamic loads, particularly in the left ventricle. To address this, we have been developing a hybrid tissue-engineered heart valve (H-TEHV) concept consisting of a nondegradable elastomeric scaffold enclosed in a valve-like living tissue constructed from autologous cells. We developed a 21 mm mitral valve scaffold for implantation in an ovine model. Smooth muscle cells/fibroblasts and endothelial cells were extracted, isolated, and expanded from the animal’s jugular vein. Next, the scaffold underwent a sequential coating with the sorted cells mixed with collagen type I. The resulting H-TEHV was then implanted into the mitral position of the same sheep through open-heart surgery. Echocardiography scans following the procedure revealed an acceptable valve performance, with no signs of regurgitation. The valve orifice area, measured by planimetry, was 2.9 cm2, the ejection fraction reached 67%, and the mean transmitral pressure gradient was measured at 8.39 mmHg. The animal successfully recovered from anesthesia and was transferred to the vivarium. Upon autopsy, the examination confirmed the integrity of the H-TEHV, with no evidence of tissue dehiscence. The preliminary results from the animal implantation suggest the feasibility of the H-TEHV.

     
    more » « less
  3. Serverless Computing has quickly emerged as a dominant cloud computing paradigm, allowing developers to rapidly prototype event-driven applications using a composition of small functions that each perform a single logical task. However, many such application workflows are based in part on publicly-available functions developed by third-parties, creating the potential for functions to behave in unexpected, or even malicious, ways. At present, developers are not in total control of where and how their data is flowing, creating significant security and privacy risks in growth markets that have embraced serverless (e.g., IoT). As a practical means of addressing this problem, we present Valve, a serverless platform that enables developers to exert complete fine-grained control of information flows in their applications. Valve enables workflow developers to reason about function behaviors, and specify restrictions, through auditing of network-layer information flows. By proxying network requests and propagating taint labels across network flows, Valve is able to restrict function behavior without code modification. We demonstrate that Valve is able defend against known serverless attack behaviors including container reuse-based persistence and data exfiltration over cloud platform APIs with less than 2.8% runtime overhead, 6.25% deployment overhead and 2.35% teardown overhead. 
    more » « less
  4. Abstract

    Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid–structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid–structure interaction.

     
    more » « less
  5. Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques. 
    more » « less