skip to main content


Title: Structured FISTA for image restoration
Summary

In this paper, we propose an efficient numerical scheme for solving some large‐scale ill‐posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix–matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage‐thresholding algorithm (FISTA) to solve the resulting optimization problem. Because the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplication algorithms at each iteration. The proposed algorithm is thus calledstructuredFISTA (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA.

 
more » « less
Award ID(s):
1819042
PAR ID:
10453564
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Numerical Linear Algebra with Applications
Volume:
27
Issue:
2
ISSN:
1070-5325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of matrix approximation and denoising induced by the Kronecker product decomposition. Specifically, we propose to approximate a given matrix by the sum of a few Kronecker products of matrices, which we refer to as the Kronecker product approximation (KoPA). Because the Kronecker product is an extensions of the outer product from vectors to matrices, KoPA extends the low rank matrix approximation, and includes it as a special case. Comparing with the latter, KoPA also offers a greater flexibility, since it allows the user to choose the configuration, which are the dimensions of the two smaller matrices forming the Kronecker product. On the other hand, the configuration to be used is usually unknown, and needs to be determined from the data in order to achieve the optimal balance between accuracy and parsimony. We propose to use extended information criteria to select the configuration. Under the paradigm of high dimensional analysis, we show that the proposed procedure is able to select the true configuration with probability tending to one, under suitable conditions on the signal-to-noise ratio. We demonstrate the superiority of KoPA over the low rank approximations through numerical studies, and several benchmark image examples. 
    more » « less
  2. The Tucker tensor decomposition is a natural extension of the singular value decomposition (SVD) to multiway data. We propose to accelerate Tucker tensor decomposition algorithms by using randomization and parallelization. We present two algorithms that scale to large data and many processors, significantly reduce both computation and communication cost compared to previous deterministic and randomized approaches, and obtain nearly the same approximation errors. The key idea in our algorithms is to perform randomized sketches with Kronecker-structured random matrices, which reduces computation compared to unstructured matrices and can be implemented using a fundamental tensor computational kernel. We provide probabilistic error analysis of our algorithms and implement a new parallel algorithm for the structured randomized sketch. Our experimental results demonstrate that our combination of randomization and parallelization achieves accurate Tucker decompositions much faster than alternative approaches. We observe up to a 16X speedup over the fastest deterministic parallel implementation on 3D simulation data. 
    more » « less
  3. Summary

    This paper presents an efficient method to perform structured matrix approximation by separation and hierarchy (SMASH), when the original dense matrix is associated with a kernel function. Given the points in a domain, a tree structure is first constructed based on an adaptive partition of the computational domain to facilitate subsequent approximation procedures. In contrast to existing schemes based on either analytic or purely algebraic approximations, SMASH takes advantage of both approaches and greatly improves efficiency. The algorithm follows a bottom‐up traversal of the tree and is able to perform the operations associated with each node on the same level in parallel. A strong rank‐revealing factorization is applied to the initial analytic approximation in theseparationregime so that a special structure is incorporated into the final nested bases. As a consequence, the storage is significantly reduced on one hand and a hierarchy of the original grid is constructed on the other hand. Due to this hierarchy, nested bases at upper levels can be computed in a similar way as the leaf level operations but on coarser grids. The main advantages of SMASH include its simplicity of implementation, its flexibility to construct various hierarchical rank structures, and a low storage cost. The efficiency and robustness of SMASH are demonstrated through various test problems arising from integral equations, structured matrices, etc.

     
    more » « less
  4. Abstract

    Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatiotemporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to nonlinear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, including a filtering analysis of satellite data, our methods strongly outperformed alternative approaches.

     
    more » « less
  5. In this paper, we consider the inverse graph filtering process when the original filter is a polynomial of some graph shift on a simple connected graph. The Chebyshev polynomial approximation of high order has been widely used to approximate the inverse filter. In this paper, we propose an iterative Chebyshev polynomial approximation (ICPA) algorithm to implement the inverse filtering procedure, which is feasible to eliminate the restoration error even using Chebyshev polynomial approximation of lower order. We also provide a detailed convergence analysis for the ICPA algorithm and a distributed implementation of the ICPA algorithm on a spatially distributed network. Numerical results are included to demonstrate the satisfactory performance of the ICPA algorithm in graph signal denoising. 
    more » « less