skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: flasher , a novel mutation in a glucosinolate modifying enzyme, conditions changes in plant architecture and hormone homeostasis
SUMMARY Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of theKNOX1mutantbrevipedicellus(bp) that we termedflasher(fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map‐based cloning and complementation tests revealed thatfshis due to an E40K change in the flavin monooxygenaseGS‐OX5, a gene encoding a glucosinolate (GSL) modifying enzyme.In vitroenzymatic assays revealed thatfshpoorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicatingFSHin feedback control of GSL flux.FSHis expressed predominantly in the vasculature in patterns that do not significantly overlap those ofBP, implying a non‐cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low inbp, butfshrestores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in thefshsuppressor are significantly lower than inbp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.  more » « less
Award ID(s):
1906486
PAR ID:
10453608
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
103
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1989-2006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ubuka, Takayoshi (Ed.)
    Somatostatin (SST) plays diverse physiological roles in vertebrates, particularly in regulating growth hormone secretion from the pituitary. While the function of SST as a neuromodulator has been studied extensively, its role in fish and mammalian reproduction remains poorly understood. To address this gap, we investigated the involvement of the somatostatin system in the regulation of growth and reproductive hormones in tilapia. RNA sequencing of mature tilapia brain tissue revealed the presence of three SST peptides: SST6, SST3, and low levels of SST1. Four different isoforms of the somatostatin receptor (SSTR) subfamily were also identified in the tilapia genome. Phylogenetic and synteny analysis identified tiSSTR2-like as the root of the tree, forming two mega clades, with SSTR1 and SSTR4 in one and SSTR2a, SSTR3a, and SSTR5b in the other. Interestingly, the tiSSTR-5 isoforms 5x1, 5x2, and 5x3 were encoded in thesstr3bgene and were an artifact of misperception in the nomenclature in the database. RNA-seq of separated pituitary cell populations showed that SSTRs were expressed in gonadotrophs, withsstr3aenriched in luteinizing hormone (LH) cells andsstr3bsignificantly enriched in follicle-stimulating hormone (FSH) cells. Notably, cyclosomatostatin, an SSTR antagonist, induced cAMP activity in all SSTRs, with SSTR3a displaying the highest response, whereas octreotide, an SSTR agonist, showed a binding profile like that observed in human receptors. Binding site analysis of tiSSTRs from tilapia pituitary cells revealed the presence of canonical binding sites characteristic of peptide-binding class A G-protein-coupled receptors. Based on these findings, we explored the effect of somatostatin on gonadotropin release from the pituitaryin vivo. Whereas cyclosomatostatin increased LH and FSH plasma levels at 2 h post-injection, octreotide decreased FSH levels after 2 h, but the LH levels remained unaffected. Overall, our findings provide important insights into the somatostatin system and its mechanisms of action, indicating a potential role in regulating growth and reproductive hormones. Further studies of the complex interplay between SST, its receptors, and reproductive hormones may advance reproductive control and management in cultured populations. 
    more » « less
  2. SUMMARY Cytokinin has strong connections to development and a growing role in the abiotic stress response. Here we show that CYTOKININ RESPONSE FACTOR 2 (CRF2) is additionally involved in the salt (NaCl) stress response. CRF2 promoter‐GUS expression indicates CRF2 involvement in the response to salt stress as well as the previously known cytokinin response. Interestingly, CRF2 mutant seedlings are quite similar to the wild type (WT) under non‐stressed conditions yet have many distinct changes in response to salt stress. Cytokinin levels measured by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that increased in the WT after salt stress are decreased incrf2, potentially from CRF2 regulation of cytokinin biosynthesis genes. Ion content measured by inductively coupled plasma optical emission spectrometry (ICP‐OES) was increased in the WT for Na, K, Mn, Ca and Mg after salt stress, whereas the corresponding Ca and Mg increases are lacking incrf2. Many genes examined by RNA‐seq analysis were altered transcriptionally by salt stress in both the WT andcrf2, yet interestingly approximately one‐third of salt‐modifiedcrf2transcripts (2655) showed unique regulation. Different transcript profiles for salt stress incrf2compared with the WT background was further supported through an examination of co‐expressed genes by weighted gene correlation network analysis (WGCMA) and principal component analysis (PCA). Additionally, Gene Ontology (GO) enrichment terms found from salt‐treated transcripts revealed most photosynthesis‐related terms as only being affected incrf2, leading to an examination of chlorophyll levels and the efficiency of photosystem II (via the ratio of variable fluorescence to maximum fluorescence,Fv/Fm) as well as physiology after salt treatment. Salt stress‐treatedcrf2plants had both reduced chlorophyll levels and lowerFv/Fmvalues compared with the WT, suggesting that CRF2 plays a role in the modulation of salt stress responses linked to photosynthesis. 
    more » « less
  3. Abstract Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e. circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type (WT) plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants. 
    more » « less
  4. SUMMARY The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type‐B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type‐A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the ricePHPgenes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three ricePHPsfail to complement an Arabidopsisphpmutant (aphp1/ahp6). Disruption of the three ricePHPsresults in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type‐A RR and cytokinin oxidase genes. The triplephpmutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the ricePHPsdoes not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct. 
    more » « less
  5. Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa. 
    more » « less