skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles
Abstract

Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle‐shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter‐coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage‐ or laser‐pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.

 
more » « less
PAR ID:
10453690
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small Methods
Volume:
5
Issue:
2
ISSN:
2366-9608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Utilizing metal nanoparticles (NPs) in Additive Manufacturing (AM) enables fabricating parts with submicrometer resolution. The thermal properties of metal NPs are drastically different from their bulk and micronsize counterparts due to nanoscale thermal transport effects, e.g. ballistic phonon/electron transport instead of diffusive transport described by Fourier’s Law. Rough estimation of metal NPs’ thermal properties with bulk values will inevitably cause large errors for AM applications, because thermal properties evolve along with the sintering process. In this study, thermal properties of 100 nm Cu NPs are examined at different sintering stages. Effective density is measured between 3500 and 5300 kg/m 3 at a sintering temperature range of 100 and 400 °C, and the sintering of Cu NPs is determined to be around 300 °C using Thermogravimetry analysis (TGA) with Differential Scanning Calorimeter (DSC). A picosecond Transient Thermoreflectance (ps-TTR) technique is employed to measure the effective thermal conductivity of Cu NPs, which jumps from 18.5 ± 0.8 W/m ∙K to 26.8 ± 2.1 W/m ⋅K onset of sintering around 300 °C. These values are less than 1/10 of the bulk value (398 W/m ⋅K). The effective thermal conductivity is almost independent on porosity except in the temperature range close to 300 °C, which comes from two factors related with nanoscale thermal transport: (i) ballistic electron transport is important in particles with size comparable with electron mean free path; (ii) effective thermal conductivity is dominated by interface scattering on particles surfaces. Our results provide insights about the importance on accurate characterization of thermal properties in metal nanoparticles due to the nanoscale phenomena. 
    more » « less
  2. null (Ed.)
    The organization of plasmonic nanoparticles (NPs) determines the strength and polarization dependence of coupling of their surface plasmons. In this study, plasmon coupling of spherical Au NPs with an average diameter of 15 nm was investigated in shape-memory polymer films before and after mechanical stretching and then after thermally driving shape recovery. Clusters of Au NPs form when preparing the films that exhibit strong plasmon coupling. During stretching, a significant polarization-dependent response develops, where the optical extinction maximum corresponding to the surface plasmon resonance is redshifted by 19 nm and blueshifted by 7 nm for polarization parallel and perpendicular to the stretching direction, respectively. This result can be explained by non-uniform stretching on the nanoscale, where plasmon coupling increases parallel to the shear direction as Au NPs are pulled into each other during stretching. The polarization dependence vanishes after shape recovery, and structural characterization confirms the return of isotropy consistent with complete nanoscale recovery of the initial arrangement of Au NPs. Simulations of the polarized optical responses of Au NP dimers at different interparticle spacings establish a plasmon ruler for estimating the average interparticle spacings within the experimental samples. An investigation of the temperature-dependent recovery behavior demonstrates an application of these materials as optical thermal history sensors. 
    more » « less
  3. Nanometer-scale crystallographic structure and orientation of a NbTiN/AlN/NbTiN device stack grown via plasma-assisted molecular beam epitaxy on c-plane sapphire are reported. Structure, orientation, interface roughness, and thickness are investigated using correlative four-dimensional scanning transmission electron microscopy and atom probe tomography (APT). This work finds NbTiN that is rock salt structured and highly oriented toward ⟨111⟩ with rotations about that axis corresponding to step edges in the c-plane sapphire with a myriad of twin boundaries that exhibit nanoscale spacing. The wurtzite (0001) AlN film grown on (111) NbTiN exhibits nm-scale changes in the thickness resulting in pinhole shorts across the barrier junction. The NbTiN overlayer grown on AlN is polycrystalline, randomly oriented, and highly strained. APT was also used to determine local changes in chemistry within the superconductor and dielectric. Deviation from both intended cation:cation and cation:anion ratios are observed. The results from conventional and nanoscale metrology highlight the challenges of engineering nitride trilayer heterostructures in material systems with complicated and understudied phase space.

     
    more » « less
  4. Abstract

    Even after more than two decades of intense studies, the research on self‐assembly processes involving supramolecular interactions between nanoparticles (NPs) is continuously expanding. Plasmonic NPs have attracted particular attention due to strong optical, electrical, biological, and catalytic effects they are accompanied with. Surface plasmon resonance characteristics of plasmonic NPs and their assemblies enable fine‐tuning of these effects with unprecedented dynamic range. In turn, the uniquely high polarizability of plasmonic nanostructures and related optical effects exemplified by surface‐enhanced Raman scattering and red–blue color changes give rise to their application to biosensing. Since supramolecular interactions are ubiquitous in nature, scientists have found a spectrum of biomimetic properties of individual and assembled NPs that can be regulated by the layer of surface ligands coating all NPs. This paradigm has given rise to multiple studies from the design of molecular containers and enzyme‐like catalysts to chiroplasmonic assemblies. Computational and theoretical advances in plasmonic effects for geometrically complex structures have made possible the nanoscale engineering of NPs, assemblies, and supramolecular complexes with biomolecules. It is anticipated that further studies in this area will be expanded toward chiral catalysis, environmental monitoring, disease diagnosis, and therapy.

     
    more » « less
  5. Abstract

    This work studied the potential of centrifugal spinning for the production of fibrous materials based on poly(D,L‐lactic acid) (PDLLA) and poly(3‐hydroxybutyrate) (PHB) with hydroxyapatite nanoparticles (n‐Hap). The influence of n‐Hap concentration (5, 10, and 15 wt.%) and spinneret angular speed on the final fiber morphology were analyzed. Further experimental evaluations were implemented to determine the effect of n‐Hap on the thermal and mechanical performance. The optimum parameters that show a balance among high yield production of homogeneous fibers with the smallest fiber average diameter were found to be at 5 wt.% of n‐Hap processed at 7000 rpm for PDLLA, and 5, 10, and 15 wt.% of n‐Hap at 6000 rpm for PHB. The thermal stability, for both systems, was not significantly affected. The mechanical performance of PHB systems was improved with the addition of n‐Hap. Osteoblast cell viability tests depicted a favorable cell response on the PDLLA systems.

     
    more » « less