skip to main content


Title: Raman spectral behavior of N 2 , CO 2 , and CH 4 in N 2 –CO 2 –CH 4 gas mixtures from 22°C to 200°C and 10 to 500 bars, with application to other gas mixtures
Abstract

The Raman spectral behavior of N2, CO2, and CH4in ternary N2–CO2–CH4mixtures was studied from 22°C to 200°C and 10 to 500 bars. The peak position of N2in all mixtures is located at lower wavenumbers compared with pure N2at the same pressure (P)–temperature (T) (PT) conditions. The Fermi diad splitting in CO2is greater in the pure system than in the mixtures, and the Fermi diad splitting increases in the mixtures as CO2concentration increases at constantPandT. The peak position of CH4in the mixtures is shifted to higher wavenumbers compared with pure CH4at the samePTconditions. However, the relationship between peak position and CH4mole fraction is more complicated compared with the trends observed with N2and CO2. The relative order of the peak position isotherms of CH4and N2in the mixtures in pressure–peak position space mimics trends in the molar volume of the mixtures in pressure–molar volume space. Relationships between the direction of peak shift of individual components in the mixtures, the relative molar volumes of the mixtures, and the attraction and repulsion forces between molecules are developed. Additionally, the relationship between the peak position of N2in ternary N2–CO2–CH4mixtures with pressure is extended to other N2‐bearing systems to assess similarities in the Raman spectral behavior of N2in various systems.

 
more » « less
NSF-PAR ID:
10453697
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Raman Spectroscopy
Volume:
52
Issue:
3
ISSN:
0377-0486
Page Range / eLocation ID:
p. 750-769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation. 
    more » « less
  2. Abstract

    Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.

     
    more » « less
  3. Abstract

    Streams and rivers are major sources of greenhouse gases (GHGs) to the atmosphere, as carbon and nitrogen are converted and outgassed during transport. Although our understanding of drivers of individual GHG fluxes has improved with numerous site‐specific studies and global‐scale compilations, our ability to parse out interrelated physical and biogeochemical drivers of gas concentrations is limited by a lack of consistently collected, temporally continuous samples of GHGs and their associated drivers. We present a first analysis of such a dataset collected by the National Ecological Observatory Network across 27 streams and rivers across ecoclimatic domains of the United States. Average concentrations of CO2ranged from 36.9 ± 0.88 to 404 ± 33 μmol L−1, CH4from 0.003 ± 0.0003 to 4.99 ± 0.72 μmol L−1, and N2O from 0.015 to 0.04 μmol L−1and spanned ranges of previous global compilations. Both CO2and CH4were strongly affected by physical drivers including mean air temperature and stream slope, as well as by dissolved oxygen and total nitrogen concentrations. N2O was exclusively correlated with total nitrogen concentrations. Results suggested that potential for gas exchange dominated patterns in gas concentrations at the site level, but contributions of in‐stream aerobic and anaerobic metabolism, and groundwater also likely varied across sites. The highest gas concentrations as well as highest variability occurred in low‐gradient, warmer, and nonperennial systems. These results are a first step in providing unprecedented, continuous estimates of GHG flux constrained by temporally variable physical and biogeochemical drivers of GHG production.

     
    more » « less
  4. Abstract

    Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

     
    more » « less
  5. Abstract

    Streams and rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. However, the magnitudes of these fluxes are uncertain, in part, because dissolved greenhouse gases (GHGs) can exhibit high spatiotemporal variability. Concentration‐discharge (CQ) relationships are commonly used to describe temporal variability stemming from hydrologic controls on solute production and transport. This study assesses how the partial pressures of two GHGs—pCO2andpCH4—vary across hydrologic conditions over 4 yr in eight nested streams and rivers, at both annual and seasonal timescales. Overall, the range ofpCO2was constrained, ranging from undersaturated to nine times oversaturated, whilepCH4was highly variable, ranging from 3 to 500 times oversaturated. We show thatpCO2exhibited chemostatic behavior (i.e., no change withQ), in part, due to carbonate buffering and seasonally specific storm responses. In contrast, we show thatpCH4generally exhibited source limitation (i.e., a negative relationship withQ), which we attribute to temperature‐mediated production. However,pCH4exhibited chemostasis in a wetland‐draining stream, likely due to hydrologic connection to the CH4‐rich wetland. These findings have implications for CO2and CH4fluxes, which are controlled by concentrations and gas transfer velocities. At highQ, enhanced gas transfer velocity acts on a relatively constant CO2stock but on a diminishing CH4stock. In other words, CO2fluxes increase withQ, while CH4fluxes are modulated by the divergentQdynamics of gas transfer velocity and concentration.

     
    more » « less