skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growing‐season length and soil microbes influence the performance of a generalist bunchgrass beyond its current range
Abstract As organisms shift their geographic distributions in response to climate change, biotic interactions have emerged as an important factor driving the rate and success of range expansions. Plant–microbe interactions are an understudied but potentially important factor governing plant range shifts. We studied the distribution and function of microbes present in high‐elevation unvegetated soils, areas that plants are colonizing as climate warms, snow melts earlier, and the summer growing season lengthens. Using a manipulative snowpack and microbial inoculation transplant experiment, we tested the hypothesis that growing‐season length and microbial community composition interact to control plant elevational range shifts. We predicted that a lengthening growing season combined with dispersal to patches of soils with more mutualistic microbes and fewer pathogenic microbes would facilitate plant survival and growth in previously unvegetated areas. We identified negative effects on survival of the common alpine bunchgrassDeschampsia cespitosain both short and long growing seasons, suggesting an optimal growing‐season length for plant survival in this system that balances time for growth with soil moisture levels. Importantly, growing‐season length and microbes interacted to affect plant survival and growth, such that microbial community composition increased in importance in suboptimal growing‐season lengths. Further, plants grown with microbes from unvegetated soils grew as well or better than plants grown with microbes from vegetated soils. These results suggest that the rate and spatial extent of plant colonization of unvegetated soils in mountainous areas experiencing climate change could depend on both growing‐season length and soil microbial community composition, with microbes potentially playing more important roles as growing seasons lengthen.  more » « less
Award ID(s):
1637686
PAR ID:
10453731
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
9
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in climate research have discovered that permafrost is particularly vulnerable to the changes occurring in the atmosphere and climate, especially in Alaska where 85% of the land is underlain by mostly discontinuous permafrost. As permafrost thaws, research has shown that natural and anthropogenic soil disturbance causes microbial communities to undergo shifts in membership composition and biomass, as well as in functional diversity. Boreal forests are home to many plants that are integral to the subsistence diets of many Alaska Native communities. Yet, it is unclear how the observed shifts in soil microbes can affect above ground plant communities that are relied on as a major source of food. In this study, we tested the hypothesis that microbial communities associated with permafrost thaw affect plant productivity by growing five plant species found in Boreal forests and Tundra ecosystems, including low-bush cranberry and bog blueberry, with microbial communities from the active layer soils of a permafrost thaw gradient. We found that plant productivity was significantly affected by the microbial soil inoculants. Plants inoculated with communities from above thawing permafrost showed decreased productivity compared to plants inoculated with microbes from undisturbed soils. We used metagenomic sequencing to determine that microbial communities from disturbed soils above thawing permafrost differ in taxonomy from microbial communities in undisturbed soils above intact permafrost. The combination of these results indicates that a decrease in plant productivity can be linked to soil disturbance driven changes in microbial community membership and abundance. These data contribute to an understanding of how microbial communities can be affected by soil disturbance and climate change, and how those community shifts can further influence plant productivity in Boreal forests and more broadly, ecosystem health. 
    more » « less
  2. Abstract Although plant–soil feedbacks (interactions between plants and soils, often mediated by soil microbes, abbreviated as PSFs) are widely known to influence patterns of plant diversity at local and landscape scales, these interactions are rarely examined in the context of important environmental factors. Resolving the roles of environmental factors is important because the environmental context may alter PSF patterns by modifying the strength or even direction of PSFs for certain species. One important environmental factor that is increasing in scale and frequency with climate change is fire, though the influence of fire on PSFs remains essentially unexamined. By changing microbial community composition, fire may alter the microbes available to colonize the roots of plants and thus seedling growth post‐fire. This has potential to change the strength and/or direction of PSFs, depending on how such changes in microbial community composition occur and the plant species with which the microbes interact. We examined how a recent fire altered PSFs of two leguminous, nitrogen‐fixing tree species in Hawaiʻi. For both species, growing in conspecific soil resulted in higher plant performance (as measured by biomass production) than growing in heterospecific soil. This pattern was mediated by nodule formation, an important process for growth for legume species. Fire weakened PSFs for these species and therefore pairwise PSFs, which were significant in unburned soils, but were nonsignificant in burned soils. Theory suggests that positive PSFs such as those found in unburned sites would reinforce the dominance of species where they are locally dominant. The change in pairwise PSFs with burn status shows PSF‐mediated dominance might diminish after fire. Our results demonstrate that fire can modify PSFs by weakening the legume‐rhizobia symbiosis, which may alter local competitive dynamics between two canopy dominant tree species. These findings illustrate the importance of considering environmental context when evaluating the role of PSFs for plants. 
    more » « less
  3. Background and aims Plant interactions with soil microbial communities are critical for understanding plant health, improving horticultural and agricultural outcomes, and maintaining diverse natural communities. In some cases, disease suppressive soils enhance plant survival in the presence of pathogens. However, species-specific differences and seasonal variation complicate our understanding of the drivers of soil fungal communities and their consequences for plants. Here, we aim to describe soil fungal communities across Rhododendron species and seasons and as well as the test for fungal indicators of species and seasons in the soil. Further, we tested for correlations between fungal community composition and prior experimental quantification of disease suppressive soils. Methods We conducted high throughput sequencing of the fungal communities found in soil collected under 14 Rhododendron species and across 2 seasons (April, October) at two sites in Ohio, USA. We described these soils and used phylogenetic analyses to ask whether fungal community composition correlated with increased plant survival with the addition of whole soil communities from a prior greenhouse experiment. Results We found effects of Rhododendron species and season on fungal communities. Fungal community composition correlated with survival following exposure to whole soil microbial communities, though this result depended on the presence of R. minus. We identified 45 Trichoderma taxa across our soil samples, and some Trichoderma were significantly associated with particular Rhododendron species in indicator species analyses. Conclusion The correlation between plant responses to soil biotic communities and fungal community composition, as well as the presence of potential beneficial taxa such as Trichoderma and mycorrhizal fungi, are consistent with fungal-mediated survival benefits from the pathogen Phytophthora cinnamomi. 
    more » « less
  4. Semrau, Jeremy D. (Ed.)
    ABSTRACT This study investigated the differences in microbial community abundance, composition, and diversity throughout the depth profiles in soils collected from corn and soybean fields in Iowa (United States) using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors, including soil organic matter, soil bulk density, and the length of time that deep soils were saturated with water, were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term, a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil, which is a precious resource for food security. IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and providing nutrients and water for plants. In the most productive agricultural systems in the United States where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (>100 cm), but little is known about the taxonomic diversity or the factors that shape deep-soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep-soil communities, and reveal more detailed information on taxa that exist in deep agricultural soils. 
    more » « less
  5. Abstract Background and aimsPlant interactions with soil microbial communities are critical for understanding plant health, improving horticultural and agricultural outcomes, and maintaining diverse natural communities. In some cases, disease suppressive soils enhance plant survival in the presence of pathogens. However, species-specific differences and seasonal variation complicate our understanding of the drivers of soil fungal communities and their consequences for plants. Here, we aim to describe soil fungal communities acrossRhododendronspecies and seasons as well as the test for fungal indicators ofRhododendronspecies in the soil. Further, we test possible mechanisms governing disease suppressive soils to the oomycete pathogenPhytophthora cinnamomi. Variation in disease susceptibility to this pathogen across species and clades allows us to test for possible fungal drivers of disease suppressive soils. MethodsWe conducted high throughput sequencing of the fungal communities found in soil collected under 14Rhododendronspecies and across 2 seasons (April, October) at two sites in Ohio, USA. Phylogenetic analyses were used to ask whether fungal community composition correlated with increased plant survival with the addition of whole soil communities from a prior greenhouse experiment. ResultsEffects ofRhododendronspecies (R2 = 0.13), season (R2 = 0.01) and their interaction on fungal communities (R2 = 0.11) were statistically significant. Fungal community composition negatively correlated with survival following exposure to whole soil microbial communities, though this result depended on the presence ofR. minus. Forty-fiveTrichodermataxa were identified across our soil samples, and someTrichodermawere significantly associated with particularRhododendronspecies (e.g.Trichoderma atroviridewas associated withR. molle) in indicator species analyses. ConclusionThe correlation between plant responses to soil biotic communities and fungal community composition, as well as the presence of potential beneficial taxa such asTrichodermaand mycorrhizal fungi, are consistent with fungal-mediated survival benefits from the pathogenPhytophthora cinnamomi. 
    more » « less