skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the non‐asymptotic and sharp lower tail bounds of random variables
The non‐asymptotic tail bounds of random variables play crucial roles in probability, statistics, and machine learning. Despite much success in developing upper bounds on tail probabilities in literature, the lower bounds on tail probabilities are relatively fewer. In this paper, we introduce systematic and user‐friendly schemes for developing non‐asymptotic lower bounds of tail probabilities. In addition, we develop sharp lower tail bounds for the sum of independent sub‐Gaussian and sub‐exponential random variables, which match the classic Hoeffding‐type and Bernstein‐type concentration inequalities, respectively. We also provide non‐asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi‐square, binomial, Poisson, Irwin–Hall, etc. We apply the result to establish the matching upper and lower bounds for extreme value expectation of the sum of independent sub‐Gaussian and sub‐exponential random variables. A statistical application of signal identification from sparse heterogeneous mixtures is finally considered.  more » « less
Award ID(s):
1811868
PAR ID:
10453746
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
9
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In general, obtaining the exact steady-state distribution of queue lengths is not feasible. Therefore, we focus on establishing bounds for the tail probabilities of queue lengths. We examine queueing systems under Heavy Traffic (HT) conditions and provide exponentially decaying bounds for the probability P(∈q > x), where ∈ is the HT parameter denoting how far the load is from the maximum allowed load. Our bounds are not limited to asymptotic cases and are applicable even for finite values of ∈, and they get sharper as ∈ - 0. Consequently, we derive non-asymptotic convergence rates for the tail probabilities. Furthermore, our results offer bounds on the exponential rate of decay of the tail, given by -1/2 log P(∈q > x) for any finite value of x. These can be interpreted as non-asymptotic versions of Large Deviation (LD) results. To obtain our results, we use an exponential Lyapunov function to bind the moment-generating function of queue lengths and apply Markov's inequality. We demonstrate our approach by presenting tail bounds for a continuous time Join-the-shortest queue (JSQ) system. 
    more » « less
  2. Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian. 
    more » « less
  3. null (Ed.)
    In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  4. In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First, we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next, we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  5. Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. Whereas large deviation principles identify the asymptotic exponential decay rate of probabilities, sharp large deviation estimates also provide the “prefactor” in front of the exponentially decaying term. For fixed p ∈ (1, ∞), consider independent sequences (X(n,p))_{n∈N} and (Θ_n)_{n∈N} of random vectors with Θn distributed according to the normalized cone measure on the unit l^n_2 sphere, and X(n,p) distributed according to the normalized cone measure on the unit lnp sphere. For almost every realization (θn)_{n∈N} of (Θ_n)_{n∈N}, (quenched) sharp large deviation estimates are established for suitably normalized (scalar) projections of X(n,p) onto θ_n, that are asymptotically exact (as the dimension n tends to infinity). Furthermore, the case when (X(n,p))_{n∈N} is replaced with (X(n,p))_{n∈N}, where X(n,p) is distributed according to the uniform (or normalized volume) measure on the unit lnp ball, is also considered. In both cases, in contrast to the (quenched) large deviation rate function, the prefactor exhibits a dependence on the projection directions (θ_n)_{n∈N} that encodes additional geometric information that enables one to distinguish between projections of balls and spheres. Moreover, comparison with numerical estimates obtained by direct computation and importance sampling shows that the obtained analytical expressions for tail probabilities provide good approximations even for moderate values of n. The results on the one hand provide more accurate quantitative estimates of tail probabilities of random projections of \ell^n_p spheres than logarithmic asymptotics, and on the other hand, generalize classical sharp large deviation estimates in the spirit of Bahadur and Ranga Rao to a geometric setting. The proofs combine Fourier analytic and probabilistic techniques. Along the way, several results of independent interest are obtained including a simpler representation for the quenched large deviation rate function that shows that it is strictly convex, a central limit theorem for random projections under a certain family of tilted measures, and multidimensional generalized Laplace asymptotics. 
    more » « less