skip to main content

Title: You are welcome here: A practical guide to diversity, equity, and inclusion for undergraduates embarking on an ecological research experience

As we build a more diverse, equitable, and inclusive culture in the ecological research community, we must work to support new ecologists by empowering them with the knowledge, tools, validation, and sense of belonging in ecology to succeed. Undergraduate research experiences (UREs) are critical for a student's professional and interpersonal skill development and key for recruiting and retaining students from diverse groups to ecology. However, few resources exist that speak directly to an undergraduate researcher on the diversity, equity, and inclusion (DEI) dimensions of embarking on a first research experience. Here, we write primarily for undergraduate readers, though a broader audience of readers, especially URE mentors, will also find this useful. We explain many of the ways a URE benefits undergraduate researchers and describe how URE students from different positionalities can contribute to an inclusive research culture. We address three common sources of anxiety for URE students through a DEI lens: imposter syndrome, communicating with mentors, and safety in fieldwork. We discuss the benefits as well as the unique vulnerabilities and risks associated with fieldwork, including the potential for harassment and assault. Imposter syndrome and toxic field experiences are known to drive students, including students from underrepresented minority groups, out of STEM. Our goal is to encourage all students, including those from underrepresented groups, to apply for UREs, build awareness of their contributions to inclusion in ecology research, and provide strategies for overcoming known barriers.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 3636-3645
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  2. In efforts to increase scientific literacy and enhance the preparation of learners to pursue careers in science, there are growing opportunities for students and teachers to engage in scientific research experiences, including course-based undergraduate research experiences (CUREs), undergraduate research experiences (UREs), and teacher research experiences (TREs). Prior literature reviews detail a variety of models, benefits, and challenges and call for the continued examination of program elements and associated impacts. This paper reports a comprehensive review of 307 papers published between 2007 and 2017 that include CURE, URE, and TRE programs, with a special focus on research experiences for K–12 teachers. A research-supported conceptual model of science research experiences was used to develop a coding scheme, including participant demographics, theoretical frameworks, methodology, and reported outcomes. We summarize recent reports on program impacts and identify gaps or misalignments between goals and measured outcomes. The field of biology was the predominant scientific disciplinary focus. Findings suggest a lack of studies explicitly targeting 1) participation and outcomes related to learners from underrepresented populations, 2) a theoretical framework that guides program design and analysis, and, for TREs, 3) methods for translation of research experiences into K–12 instructional practices, and 4) measurement of impact on K–12 instructional practices. 
    more » « less
  3. While the computer science community has explored the importance of Undergraduate Research Experiences (UREs) and, separately, collaboration in computing (e.g. pair programming), little research has studied collaboration in the context of a URE. We performed a qualitative thematic analysis of how students collaborate within a group-structured, academic-year, inclusive computing URE catered towards second-year students at two large public research universities in the United States. We analyzed free-response and Likert-scale survey data collected early and late in the program from a total of 106 students who comprised three program cohorts. We studied their overall group function, what aspects of group work led to positive or negative group experiences, how their group affected their feelings of being supported, and how their group affected their sense of belonging in computing. We found that group experiences were overwhelmingly positive. Further, we found that students’ experiences in groups centered around three themes: group fit and belonging, emotional and academic support, and logistics. Within each theme, their experiences were rich and nuanced, and we observed variations by gender, and to a lesser degree by race. Our work suggests that group-structured UREs are both feasible and beneficial for students, and we give concrete suggestions for how to make these experiences successful. 
    more » « less
  4. Freitag, Nancy E. (Ed.)
    The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers.


    Summer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.

    more » « less
  5. Longitudinal analysis of nationwide single and multi-institutional data shows the positive relationship between student educational outcomes and a diverse student population. Various position papers and empirical studies have raised awareness about the importance of diversity in higher education within the academic community and policy makers over the past half century. However, lack of participation by underrepresented students in higher education remains a chronic and multidimensional problem. Mitigating any particular factor and expecting broad based impact has not worked and will not work. The U.S. Department of education suggested some proven, over-arching principles for institutions of higher education to increase diversity, viz.: institutional commitment, diversity at all levels, outreach and recruitment, support services for students, and an inclusive campus environment. While some of these principles can only be addressed at the institutional level, a department or college can adopt scaled versions of these principles and influence the policies at the institutional level. This paper discusses the journey of a school of engineering towards developing strategies for improving equity, inclusion, and diversity in the graduate programs in engineering. In the process, this group of researchers articulated some critical issues that prevent diverse and economically disadvantaged undergraduate students from seeking a graduate degree in engineering. The authors have identified the following major reasons hindering students from pursuing a graduate degree: lack of financial support and resources, fear of the unknown, imposter syndrome, and family pressure to start earning as soon as possible. Each of these areas requires a targeted approach to help diversify the graduate engineering programs. A GVSU team comprised of administrators and faculty members sought to build a comprehensive program that incorporates all of the aforementioned structures and others. This paper describes the development strategy of such a program that culminated with an NSF (National Science Foundation) award. 
    more » « less