At the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, emerged and rapidly caused a global pandemic. SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19), which affects the respiratory tract and lungs of infected individuals. Due to the increased transmissibility of the SARS-CoV-2 virus compared to its previous versions, determining as fully as possible the various structural aspects of the virus became critical for the development of therapeutics and vaccines to combat this virus. Knowing the structures of viral proteins and their glycosylation is an essential foundation for the understanding of the mechanism of the disease. Glycopeptide analysis has been used to map the glycosylation of viral glycoproteins, including those of influenza and HIV. Thanks to the developments in the field over the last few decades, scientists were able to quickly develop therapeutics against SARS-CoV-2. This chapter discusses the four structural proteins of SARS-CoV-2, their glycosylation and modifications, and the techniques used to map SARS-CoV-2 glycosylation.
more »
« less
Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic
Summary As the coronavirus disease 2019 outbreak evolves, statistical network analysis is playing an essential role in informing policy decisions. Therefore, researchers who are new to such studies need to understand the techniques available to them. As a field, statistical network analysis aims to develop methods that account for the complex dependencies found in network data. Over the last few decades, the area has rapidly accumulated methods, including techniques for network modelling and simulating the spread of infectious disease. This article reviews these network modelling techniques and their applications to the coronavirus disease 2019 pandemic.
more »
« less
- PAR ID:
- 10453811
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- International Statistical Review
- Volume:
- 88
- Issue:
- 2
- ISSN:
- 0306-7734
- Format(s):
- Medium: X Size: p. 419-440
- Size(s):
- p. 419-440
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Single-cell RNA sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological processes, such as those occurring during the development of complex organisms, and improved our understanding of disease states, such as cancer, diabetes, and coronavirus disease 2019 (COVID-19). Deep learning, a recent advance of artificial intelligence that has been used to address many problems involving large datasets, has also emerged as a promising tool for scRNA-seq data analysis, as it has a capacity to extract informative and compact features from noisy, heterogeneous, and high-dimensional scRNA-seq data to improve downstream analysis. The present review aims at surveying recently developed deep learning techniques in scRNA-seq data analysis, identifying key steps within the scRNA-seq data analysis pipeline that have been advanced by deep learning, and explaining the benefits of deep learning over more conventional analytic tools. Finally, we summarize the challenges in current deep learning approaches faced within scRNA-seq data and discuss potential directions for improvements in deep learning algorithms for scRNA-seq data analysis.more » « less
-
Abstract Background The Coronavirus Disease 2019 (COVID-19) pandemic warranted a myriad of government-ordered business closures across the USA in efforts to mitigate the spread of the virus. This study aims to discover the implications of government-enforced health policies of reopening public businesses amidst the pandemic and its effect on county-level infection rates. Methods Eighty-three US counties (n = 83) that reported at least 20 000 cases as of 4 November 2020 were selected for this study. The dates when businesses (restaurants, bars, retail, gyms, salons/barbers and public schools) partially and fully reopened, as well as infection rates on the 1st and 14th days following each businesses’ reopening, were recorded. Regression analysis was conducted to deduce potential associations between the 14-day change in infection rate and mask usage frequency, median household income, population density and social distancing. Results On average, infection rates rose significantly as businesses reopened. The average 14-day change in infection rate was higher for fully reopened businesses (infection rate = +0.100) compared to partially reopened businesses (infection rate = +0.0454). The P-value of the two distributions was 0.001692, indicating statistical significance (P < 0.01). Conclusion This research provides insight into the transmission of COVID-19 and promotes evidence-driven policymaking for disease prevention and community health.more » « less
-
Cell–cell interactions (CCI) play significant roles in manipulating biological functions of cells. Analyzing the differences in CCI between healthy and diseased conditions of a biological system yields greater insight than analyzing either conditions alone. There has been a recent and rapid growth of methods to infer CCI from single-cell RNA-sequencing (scRNA-seq), revealing complex CCI networks at a previously inaccessible scale. However, the majority of current CCI analyses from scRNA-seq data focus on direct comparisons between individual CCI networks of individual samples from patients, rather than “group-level” comparisons between sample groups of patients comprising different conditions. To illustrate new biological features among different disease statuses, we investigated the diversity of key network features on groups of CCI networks, as defined by different disease statuses. We considered three levels of network features: node level, as defined by cell type; node-to-node level; and network level. By applying these analysis to a large-scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-19), we observe biologically meaningful patterns aligned with the progression and subsequent convalescence of COVID-19.more » « less
-
A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number R 0 —the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of R 0 during the beginning of the outbreak vary widely, despite relying on similar data sources. Here, we present a statistical framework for comparing and combining different estimates of R 0 across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate, the mean generation interval and the generation-interval dispersion. We apply our framework to early estimates of R 0 for the SARS-CoV-2 outbreak, showing that many R 0 estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of R 0 , including the shape of the generation-interval distribution, in efforts to estimate R 0 at the outset of an epidemic.more » « less
An official website of the United States government
