skip to main content


Title: Transformation of western hemlock ( Tsuga heterophylla ) tree crowns by dwarf mistletoe ( Arceuthobium tsugense , Viscaceae)
Abstract

Dwarf mistletoes (Arceuthobiumspecies) are arboreal, hemiparasitic plants of conifers that can change the structure and function of the tree crown. Hemlock dwarf mistletoe (Arceuthobium tsugensesubsp.tsugense)principally parasitizes western hemlock (Tsuga heterophylla) and effects 10.8% of all western hemlock trees in Oregon, USA. In this study, we climbed 16 western hemlock trees (age 97–321 years, height 33–54.7 m) across a gradient of infection (0%–100% of branches infected) and measured occurrence of all dwarf mistletoe infections, dwarf mistletoe caused deformities, foliage, branch and crown metrics, and sapwood area. We then modelled over 25 different response variables using linear and generalized linear models with three metrics of severity as explanatory variables: total infection incidence, proportion of all live branches infected, and proportion of all live, infected branches with 33 per cent or more foliage distal to infection. A strong effect of dwarf mistletoe intensification was the reduction of branch foliage and an increase in the proportional amount of foliage distal to infections, with severely infected trees having the majority of foliage distal to infections. Increasing severity led to an apparent crown compaction as crown volumes decreased and became increasingly comprised of deformities. Sapwood area was unrelated to infection severity. Branch length and diameters were unrelated to increasing infection severity despite severely infected branches supporting 1–70 infections. The most severely infected tree had 3,615 individual plants in the crown. Our results suggested that shifts in crown structure and branch deformation, foliage amount, and foliage distal to infection, reflected a likely reduction of capacity for tree growth that coincided with a hypothesized increase in resource demand by dwarf mistletoe plants as infection severity intensified.

 
more » « less
Award ID(s):
2025755
NSF-PAR ID:
10453846
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Forest Pathology
Volume:
51
Issue:
1
ISSN:
1437-4781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Insects and pathogens are widely recognized as contributing to increased tree vulnerability to the projected future increasing frequency of hot and dry conditions, but the role of parasitic plants is poorly understood even though they are common throughout temperate coniferous forests in the western United States. We investigated the influence of western hemlock dwarf mistletoe (Arceuthobium tsugense) on large (≥45.7 cm diameter) western hemlock (Tsuga heterophylla) growth and mortality in a 500 year old coniferous forest at the Wind River Experimental Forest, Washington State, United States. We used five repeated measurements from a long‐term tree record for 1,395T. heterophyllaindividuals. Data were collected across a time gradient (1991–2014) capturing temperature increases and precipitation decreases. The dwarf mistletoe rating (DMR), a measure of infection intensity, varied among individuals. Our results indicated that warmer and drier conditions amplified dwarf mistletoe effects onT. heterophyllatree growth and mortality. We found that heavy infection (i.e., high DMR) resulted in reduced growth during all four measurement intervals, but during warm and dry intervals (a) growth declined across the entire population regardless of DMR level, and (b) both moderate and heavy infections resulted in greater growth declines compared to light infection levels. Mortality rates increased from cooler‐wetter to warmer‐drier measurement intervals, in part reflecting increasing mortality with decreasing tree growth. Mortality rates were positively related to DMR, but only during the warm and dry measurement intervals. These results imply that parasitic plants like dwarf mistletoe can amplify the impact of climatic stressors of trees, contributing to the vulnerability of forest landscapes to climate‐induced productivity losses and mortality events.

     
    more » « less
  2. Host-parasite interactions and host susceptibility are key traits in understanding trophic energy transfer, nutrient movement and general macro-ecoevolutionary dynamics of mistletoe systems and plant-plant interactions. This research investigates host susceptibility and size-dependent interactions of the mistletoe Phoradendron quad- rangulare, a widely distributed species, on Guazuma ulmifolia. We studied the interplay between mistletoe load and host tree size, while also exploring the allometric relationship between host branch size and mistletoe size. A field surveys on 67 trees revealed varying mistletoe loads, with most trees showing no occurrence of P. quadrangulare. Parasitized trees had significantly larger diameters at breast height (DBH) than non-parasitized trees. The susceptibility of host trees to mistletoe parasitism increased with increasing DBH, indicating a positive relationship between host size and mistletoe prevalence. Furthermore, mistletoe stem diameter was found to be influenced by the diameter of the host branch suggesting that larger host trees provide more substrate for larger-sized parasites and surface area for mistletoe colonization, potentially contributing to the parasite’s survival and prevalence. This study also highlights the importance of host size in mistletoe presence and performance and provides insights into the broader eco-evolutionary dynamics and conservation strategies needed to conserve mistletoes, an often-underappreciated keystone taxa. 
    more » « less
  3. Acute infections can alter foraging and movement behaviors relevant to sociality and pathogen spread. However, few studies have directly examined how acute infections caused by directly transmitted pathogens influence host social preferences. While infected hosts often express sickness behaviors (e.g., lethargy) that can reduce social associations with conspecifics, enhanced sociality during infection might be favored in some systems if social grouping improves host survival of infection. Directly assaying social preferences of infected hosts is needed to elucidate potential changes in social preferences that may act as a form of behavioral tolerance (defined as using behavior to minimize fitness costs of infection). We tested how infection alters sociality in juvenile house finches (Haemorhous mexicanus), which are both highly gregarious and particularly susceptible to infection by the bacterial pathogenMycoplasma gallisepticum(MG). We inoculated 33 wild‐caught but captive‐held juvenile house finches with MG or media (sham control). At peak infection, birds were given a choice assay to assess preference for associating near a flock versus an empty cage. We then repeated this assay after all birds had recovered from infection. Infected birds were significantly more likely than controls to spend time associating with, and specifically foraging near, the flock. However, after infected birds had recovered from MG infection, there were no significant differences in the amount of time birds in each treatment spent with the flock. These results indicate augmented social preferences during active infection, potentially as a form of behavioral tolerance. Notably, infected birds showed strong social preferences regardless of variation in disease severity or pathogen loads, with 14/19 harboring high loads (5–6 log10copies of MG) at the time of the assay. Overall, our results show that infection with a directly transmitted pathogen can augment social preferences, with important implications for MG spread in natural populations.

     
    more » « less
  4. Abstract

    This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family:Geminiviridae,Genus:Begomovirus) by the whitefly vectorBemisia tabaciMEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.

     
    more » « less
  5. 1. As trees age, they undergo significant physiological and morphological changes. Nevertheless, tree ontogeny and its impacts on herbivores are often overlooked as determinants of plant–herbivore population dynamics and the strength of plant–herbivore interactions.

    2.Juniperus(Cupressaceae) is a dominant, long‐lived conifer that serves as the sole host to a specialised assemblage of caterpillars. Over the past 150 years, several juniper species in western North America have expanded their geographic occupancy at local and regional scales, which has resulted in an increase in the number of immature trees on the landscape. Using assays in the laboratory, the effects of tree ontogeny on caterpillar performance and oviposition preference for two juniper specialist caterpillars,Callophrys gryneus(Lycaenidae) andGlena quinquelinearia(Geometridae), were examined. The study considered whether responses to tree ontogeny were consistent across caterpillar species and juniper host species.

    3. Tree age was found to be a reliable predictor of caterpillar performance, with caterpillars developing more quickly and growing larger when fed foliage from young trees. Differences in the phytochemical diversity between foliage from trees of different ages might help to explain observed differences in caterpillar performance. Interestingly, the specialist butterfly,C. gryneus, displayed an oviposition preference for foliage from old‐growthJuniperus osteospermatrees, despite the fact that larvae of this species performed poorly on older trees.

    4. It is concluded that young juniper trees are an important resource for the specialised Lepidopteran community and that tree ontogeny is an important component of intraspecific variation, which contributes to the structure of plant–herbivore communities.

     
    more » « less