skip to main content


Title: Development and Evaluation of an Ensemble‐Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions
Abstract

The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high‐altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited‐area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3‐month prototype reanalysis over the summer months (June−August) of 2015 using WRF‐EnKF at a 30‐km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA‐Interim and fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6‐ to 12‐hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite‐based precipitation versus those from ERA‐Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA‐Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale‐simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.

 
more » « less
Award ID(s):
1712290
PAR ID:
10453928
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
11
Issue:
8
ISSN:
1942-2466
Page Range / eLocation ID:
p. 2503-2522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Diurnal variations of gravity waves over the Tibetan Plateau (TP) in summer 2015 were investigated based on high-resolution downscaled simulations from WRF-EnKF (Weather Research and Forecasting model and an ensemble Kalman filter) regional reanalysis data with particular emphasis on wave source, wave momentum fluxes and wave energies. Strong diurnal precipitations, which mainly happen along the south slope of the TP, tend to excite upward-propagating gravity waves. The spatial and temporal distributions of the momentum fluxes of small-scale (10–200 km) and meso-scale (200–500 km) gravity waves agree well with the diurnal precipitation distributions. The power spectra of momentum fluxes also show that the small- and meso-scale atmospheric processes become important during the period of the strongest rainfall. Eastward momentum fluxes and northward momentum fluxes are dominant. Wave energies are described in terms of kinetic energy (KE), potential energy (PE) and vertical fluctuation energy (VE). The diurnal variation and spatial distribution of VE in the lower stratosphere correspond to the diurnal rainfall in the troposphere. 
    more » « less
  2. Abstract

    This study aims to assess the performance of European Center for Medium‐Range Weather Forecasting (ECMWF) Reanalysis fifth generation (ERA5) in terms of the progress made over its predecessor, ERA‐Interim, over East Africa (EA) in reproducing observed rainfall. The observed rainfall used as reference rainfall are Global Precipitation Climatology Center (GPCC) and Climate Research Unit Time Series (CRU‐TS). The performance of ERA5 to its predecessor is evaluated using root‐mean‐square error (RMSE), correlation, and bias. The reductions of wet bias from ERA‐Interim to ERA5 are 16.81–6.94% from June to September (JJAS), 31.99–19.33% from September to December (SOND), and 29.24–17.69% from December to February (DJF) over most of EA relative to CRU‐TS. Similar reductions in the wet bias relative to GPCC are also noted. Spatially, notable reductions are observed over western Ethiopia, Sudan Republic, South Sudan, and Uganda. The decreasing trends revealed in the bias of seasonal ERA5 rainfall relative to CRU‐TS and GPCC are attributed to an increase in the number and quality of assimilated observations in ERA5 over its predecessors. RMSE of ERA5 rainfall relative to the two reference rainfall and correlations with the two reference rainfall are consistent with spatial and temporal features captured in the bias. Specifically, the correlation of the monthly time series of ERA5 ranges from 0.90 with CRU‐TS over equatorial EA (EEA) to 0.98 with GPCC over southern EA (SEA) in contrast to that of ERA‐Interim which ranges from 0.84 with CRU‐TS over EEA to 0.93 with CRU‐TS over SEA. However, the wet bias in ERA5 along the Great Rift Valley remained the same as in ERA‐Interim whereas spatial correlation of ERA5 with the two reference rainfall is relatively weaker than that of ERA‐Interim.

     
    more » « less
  3. Abstract

    More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

     
    more » « less
  4. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land– sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less
  5. Abstract

    This study compares temperature, precipitation, and other climate variables from six widely used climate reanalysis products to inform ice‐core climate proxy record calibration in the Altiplano region of the central Andes. The reanalyzes are the European Reanalysis version 5 (ERA5), European Reanalysis Interim, Modern‐Era Retrospective analysis for Research and Applications (MERRA2), Japanese 55‐year Reanalysis, Climate Forecast System Reanalysis and version 2 extension, and NCEP/NCAR Reanalysis version 1. These data products are validated against observations from automatic weather stations on the Quelccaya Ice Cap, Peru (5,650 m a.s.l) and Chacaltaya, Bolivia (5,238 m a.s.l), in addition to lower sites ranging in elevation 2,500–4,900 m a.s.l. Our results suggest that ERA5 provides the most robust overall depiction of temperature and precipitation across the study domain, and the data set is particularly useful for its back‐extension to 1950. However, MERRA2 produces lower precipitation error scores owing to a gaged‐based bias correction. An examination of ERA5 vertical atmospheric profiles for a latitudinal transect over Quelccaya shows considerable variability, including across major El Niño events, suggesting the need for caution when interpreting isotopic signatures in ice cores.

     
    more » « less