skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of microorganisms with nonlinear electrokinetic microsystems
Abstract Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up‐to‐date knowledge on the current state‐of‐the‐art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included.  more » « less
Award ID(s):
1705895
PAR ID:
10453939
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
42
Issue:
5
ISSN:
0173-0835
Format(s):
Medium: X Size: p. 588-604
Size(s):
p. 588-604
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The manner of sample injection is critical in microscale electrokinetic (EK) separations, as the resolution of a separation greatly depends on sample quality and how the sample is introduced into the system. There is a significant wealth of knowledge on the development of EK injection methodologies that range from simple and straightforward approaches to sophisticated schemes. The present study focused on the development of optimized EK sample injection schemes for direct current insulator-based EK (DC-iEK) systems. These are microchannels that contain arrays of insulating structures; the presence of these structures creates a nonuniform electric field distribution when a potential is applied, resulting in enhanced nonlinear EK effects. Recently, it was reported that the nonlinear EK effect of electrophoresis of the second kind plays a major role in particle migration in DC-iEK systems. This study presents a methodology for designing EK sample injection schemes that consider the nonlinear EK effects exerted on the particles being injected. Mathematical modeling with COMSOL Multiphysics was employed to identify proper voltages to be used during the EK injection process. Then, a T-microchannel with insulating posts was employed to experimentally perform EK injection and separate a sample containing two types of similar polystyrene particles. The quality of the EK injections was assessed by comparing the resolution (Rs) and number of plates (N) of the experimental particle separations. The findings of this study establish the importance of considering nonlinear EK effects when planning for successful EK injection schemes. 
    more » « less
  2. null (Ed.)
    The increased concern regarding emerging pathogens and antibiotic resistance has drawn interest in the development of rapid and robust microfluidic techniques to analyze microorganisms. The novel parameter known as the electrokinetic equilibrium condition (EEEC) was presented in recent studies, providing an approach to analyze microparticles in microchannels employing unique electrokinetic (EK) signatures. While the EEEC shows great promise, current estimation approaches can be time-consuming or heavily user-dependent for accurate values. The present contribution aims to analyze existing approaches for estimating this parameter and modify the process into an accurate yet simple technique for estimating the EK behavior of microorganisms in insulator-based microfluidic devices. The technique presented here yields the parameter called the empirical electrokinetic equilibrium condition (eEEEC) which works well as a value for initial approximations of trapping conditions in insulator-based EK (iEK) microfluidic systems. A total of six types of microorganisms were analyzed in this study (three bacteria and three bacteriophages). The proposed approach estimated eEEEC values employing images of trapped microorganisms, yielding high reproducibility (SD 5.0–8.8%). Furthermore, stable trapping voltages (sTVs) were estimated from eEEEC values for distinct channel designs to test that this parameter is system-independent and good agreement was obtained when comparing estimated sTVs vs. experimental values (SD 0.3–19.6%). The encouraging results from this work were used to generate an EK library of data, available on our laboratory website. The data in this library can be used to design tailored iEK microfluidic devices for the analysis of microorganisms. 
    more » « less
  3. ABSTRACT Dielectrophoresis (DEP) has been extensively researched over the years for filtration, separation, detection, and collection of micro/nano/bioparticles. Numerical models have historically been employed to predict particle trajectories in three‐dimensional (3D) DEP systems, but a common issue arises due to inherent noise near the edges of electrodes due to electric potential discontinuity, specifically when calculating electric field and gradient of electric field‐squared, . This noise can be reduced to a certain extent with a finer mesh density but results near the electrode edge still have significant error. Realizing the importance of particle‐electrode edge interactions prevalent in positive DEP systems, analytical solutions given by Sun et al. was incorporated to demonstrate an improved 3D model of interdigitated electrodes. The results of electric field and gradient of electric field‐squared of the numerical model and the improved analytical 3D model were compared, within a simulation space of 50 µm height, 10 µm width, and 50 µm length with interdigitated electrodes of the same width and gap of 10 µm. The DEP particle trajectory error due to the noise was quantified for different particle sizes at various heights above the electrode edge. For example, at 5 Vrms, a trapped 500 nm particles exhibited a velocity error of 104µm/s (it should have been zero). 
    more » « less
  4. Abstract Mathematical modeling is a fundamental component in the development of new microfluidics techniques and devices. Modeling allows for the rapid testing of new system configurations while saving resources. Microscale electrokinetic (EK) techniques have significantly benefited by the advances in modeling programs and software packages. However, EK phenomena are complex to model, as they dynamically affect system characteristics, including the physical properties of the particles and fluid within the system. Insulator‐based dielectrophoresis (iDEP) is an EK technique that has received important attention during the last two decades. In particular, numerous research groups that study iDEP systems employ a combination of modeling and experimentation for developing new iDEP systems. An important fraction of these research groups has adopted the practice of employing “correction factors” to account for EK phenomena that cannot be accurately predicted in their models due to model complexity and limitations in computing resources. The present review article aims to provide the reader with an overview of the most common approaches in the use of correction factors for the modeling of iDEP systems. 
    more » « less
  5. Abstract The frequency dependence of electrokinetic particle trapping using large‐area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well‐based device. 
    more » « less