skip to main content

Title: Species‐specific variation in germination rates contributes to spatial coexistence more than adult plant water use in four closely related annual flowering plants

Spatial partitioning is a classic hypothesis to explain plant species coexistence, but evidence linking local environmental variation to spatial sorting, demography and species' traits is sparse. If co‐occurring species' performance is optimized differently along environmental gradients because of trait variation, then spatial variation might facilitate coexistence.

We used a system of four naturally co‐occurring species ofClarkia(Onagraceae) to ask whether distribution patchiness corresponds to variation in two environmental variables that contribute to hydrological variation. We then reciprocally sowedClarkiainto each patch type and measured demographic rates in the absence of congeneric competition. Species sorted in patches along one or both gradients, and in three of the four species, germination rate in the ‘home’ patch was higher than all other patches.

Spatially variable germination resulted in the same three species exhibiting the highest population growth rates in their home patches.

Species' trait values related to plant water use, as well as indicators of water stress in home patches, differed among species and corresponded to home patch attributes. However, post‐germination survival did not vary among species or between patch types, and fecundity did not vary spatially.

Synthesis. Our research demonstrates the likelihood that within‐community spatial heterogeneity affects plant species coexistence, and presents novel evidence that differential performance in space is explained by what happens in the germination stage. Despite the seemingly obvious link between adult plant water‐use and variation in the environment, our results distinguish the germination stage as important for spatially variable population performance.

more » « less
Award ID(s):
1256288 1754299 1754157
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Ecology
Page Range / eLocation ID:
p. 2584-2600
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.

    We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.

    We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.

    We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.

    Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.

    more » « less
  2. Abstract

    Previous theoretical work has highlighted the potential for natural enemies to mediate the coexistence of species with similar life histories via density‐dependent effects on survivorship. For plant pathogens to play this role, they must differ in their ability to infect or induce disease in different host plant species. In tropical forests characterized by high diversity, these effects must extend to phylogenetically closely related species pairs. Mortality at the seed and seedling stage strongly influences the abundance and distribution of tropical tree species, but the host preferences and spatial distributions of fungi are rarely determined.

    We examined how host species identity, relatedness and seed viability influence the composition of fungal communities associated with seeds of four co‐occurring pioneer trees (Cecropia insignis,C. longipes,C. peltataandJacaranda copaia). Seeds were buried in mesh bags in five common gardens in the understorey of a lowland tropical forest in Panama and retrieved at intervals from 1 to 30 months. A subset of the seeds in each bag was used to determine germination success. One half of each remaining seed was tested for viability; and the other half was used to culture and identify seed‐infecting fungi.

    Seeds were infected by fungi after burial. Although fungal communities differed in viable versus dead seeds, and across burial locations, community composition primarily varied as a function of plant species identity (30.7% of variation in community composition vs. 4.5% for viability and location together), even for congenericCecropiaspecies. Phylogenetic reconstruction showed that relatedness of fungi mostly reflected differences betweenJacaranda(Bignoniaceae) andCecropia(Urticaceae).

    Although the proportion of germinable seeds decreased gradually over time for all species, intraspecific variation in survival was high at the same location (e.g. ranging from 0% to 100% forC. peltata) suggesting variable exposure or susceptibility to seed pathogens.

    Synthesis. Our study provides evidence under field conditions that congeneric tree species with similar life history traits differ markedly in seed‐associated fungal communities when exposed to the same soil‐borne fungi. This is a critical first step supporting pathogen‐mediated coexistence of closely related tree species.

    more » « less
  3. Abstract

    The structure of local ecological communities is thought to be determined by a series of hierarchical abiotic and biotic filters which select for or against species based on their traits. Many human impacts, like fragmentation, serve to alter environmental conditions across a range of spatial scales and may impact trait–environment interactions.

    We examined the effects of environmental variation associated with habitat fragmentation of seagrass habitat measured from microhabitat to landscape scales in controlling the taxonomic and trait‐based community structure of benthic fauna.

    We measured patterns in species abundance and biomass of seagrass epifauna and infauna sampled using sediment cores from 86 sites (across 21 meadows) in Back Sound, North Carolina, USA. We related local faunal community structure to environmental variation measured at three spatial scales (microhabitat, patch and landscape). Additionally, we tested the value of species traits in predicting species‐specific responses to habitat fragmentation across scales.

    While univariate measures of faunal communities (i.e. total density, biomass and species richness) were positively related to microhabitat‐scale seagrass biomass only, overall community structure was predicted by environmental variation at the microhabitat, patch (i.e. patch size) and landscape (i.e. number of patches, landscape seagrass area) scales. Furthermore, fourth‐corner analysis revealed that species traits explained as much variation in organismal densities as species identity. For example, species with planktonic‐dispersing larvae and deposit‐feeding trophic modes were more abundant in contiguous, high seagrass cover landscapes while suspension feeders favoured more fragmented landscapes.

    We present quantitative evidence supporting hierarchal models of community assembly which predict that interactions between species traits and environmental variation across scales ultimately drive local community composition. Variable responses of individual traits to multiple environmental variables suggest that community assembly processes that act on species via traits related to dispersal, mobility and trophic mode will be altered under habitat fragmentation. Additionally, with increasing global temperatures, the tropical seagrassHalodule wrightiiis predicted to replace the temperateZostera marinaas the dominate seagrass in our study region, therefore potentially favouring species with planktonic‐dispersing larva and weakening the strength of environmental control on community assembly.

    more » « less
  4. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

    more » « less
  5. Abstract

    Plant species can show considerable morphological and functional variation along environmental gradients. This intraspecific trait variation (ITV) can have important consequences for community assembly, biotic interactions, ecosystem functions and responses to global change. However, directly measuring ITV across many species and wide geographic areas is often infeasible. Thus, a method to predict spatial variation in a species’ functional traits could be valuable.

    We measured specific leaf area (SLA), height and leaf area (LA) of grasses across California, covering 59 species at 230 sampling locations. We asked how these traits change along climate gradients within each species and used machine learning to predict local trait values for any species at any location based on phylogenetic position, local climate and that species’ mean traits. We then examined how much these local predictions alter patterns of assemblage‐level trait variation across the state.

    Most species exhibited higher SLA and grew taller at higher temperatures and produced larger leaves in drier conditions. The random forests predicted spatial variation in functional traits very accurately, with correlations up to 0.97. Because trait records were spatially biased towards warmer areas, and these areas tend to have higher SLA individuals within each species, species means of SLA were upwardly biased. As a result, using species means over‐estimates SLA in the cooler regions of the state. Our results also suggest that height may be substantially under‐predicted in the warmest areas.

    Synthesis. Using only species mean traits to characterize the functional composition of communities risks introducing substantial error into trait‐based estimates of ecosystem properties including decomposition rates or NPP. The high performance of random forests in predicting local trait values provides a way forward for estimating high‐resolution patterns of ITV without a massive data collection effort.

    more » « less