skip to main content


Title: Social network position experiences more variable selection than weaponry in wild subpopulations of forked fungus beetles
Abstract

The phenotypic expression and fitness consequences of behaviours that are exhibited during social interactions are especially sensitive to their local social context. This context‐dependence is expected to generate more variation in the sign and magnitude of selection on social behaviour than that experienced by static characters like morphology. Relatively few studies, however, have examined selection on behavioural traits in multiple populations.

We estimated sexual selection in the wild to determine if the strength and form of selection on social phenotypes is more variable than that on morphology.

We compared selection gradients on social network position, body size, and weaponry of male forked fungus beetlesBolitotherus cornutusas they influenced mating success across nine natural subpopulations.

Male horn length consistently experienced positive sexual selection. However, the sign and magnitude of selection on individual measures of network centrality (strength and betweenness) differed significantly among subpopulations. Moreover, selection on social behaviours occurred at a local scale (‘soft selection’), whereas selection on horn length occurred at the metapopulation scale (‘hard selection’).

These results indicate that an individual with a given social phenotype could experience different fitness consequences depending on the network it occupies. While individuals seem to be unable to escape the fitness effects of their morphology, they may have the potential to mediate the pressures of selection on behavioural phenotypes by moving among subpopulations or altering social connections within a network.

 
more » « less
NSF-PAR ID:
10453946
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
90
Issue:
1
ISSN:
0021-8790
Page Range / eLocation ID:
p. 168-182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Social interactions with conspecifics can dramatically affect an individual’s fitness. The positive or negative consequences of interacting with social partners typically depend on the value of traits that they express. These pathways of social selection connect the traits and genes expressed in some individuals to the fitness realized by others, thereby altering the total phenotypic selection on and evolutionary response of traits across the multivariate phenotype. The downstream effects of social selection are mediated by the patterns of phenotypic assortment between focal individuals and their social partners (the interactant covariance, Cij′, or the multivariate form, CI). Depending on the sign and magnitude of the interactant covariance, the direction of social selection can be reinforced, reversed, or erased. We report estimates of Cij′ from a variety of studies of forked fungus beetles to address the largely unexplored questions of consistency and plasticity of phenotypic assortment in natural populations. We found that phenotypic assortment of male beetles based on body size or horn length was highly variable among subpopulations, but that those differences also were broadly consistent from year to year. At the same time, the strength and direction of Cij′ changed quickly in response to experimental changes in resource distribution and social properties of populations. Generally, interactant covariances were more negative in contexts in which the number of social interactions was greater in both field and experimental situations. These results suggest that patterns of phenotypic assortment could be important contributors to variability in multilevel selection through their mediation of social selection gradients.

     
    more » « less
  2. Abstract

    Selective logging is the primary cause of tropical forest degradation and is rapidly expanding worldwide. While the impacts of logging on species diversity and distributions are well understood, little is known about the effects of logging on animal behaviours central to individual fitness and population persistence.

    The song rate of breeding songbirds is a behavioural trait that is often positively associated with male density and used by conspecific females as an indicator of territory and male quality. Thus, contrasting logging‐induced adjustments in song rates of individual birds with population shifts may illuminate potential mechanisms underlying population distributions.

    We present a novel application of bioacoustic monitoring, integrating counts of individuals, songs and duets from single automated recording units (ARUs) withN‐mixture models, to estimate shifts in population parameters (occupancy, abundance) and singing behaviours (per‐capita song rates, per‐pair duet rates) of 32 Bornean songbird species with logging. We tested hypotheses on the relationships between adjustments in behavioural and population parameters with logging, and further tested the extent to which species traits predicted behavioural and population shifts.

    Adjustments to singing behaviour in 59 and 53% of species (57% of duetting species) were concordant with differences in occupancy and abundance respectively, such that species showing reduced populations with logging also produced fewer songs per‐capita, and vice versa. Species known to prefer undisturbed habitats and large‐bodied species showed the most negative effects of logging on singing behaviour and population distributions. Species known to exploit degraded habitats exhibited the opposite pattern. Subdued singing in logged forests by species of conservation concern suggests limited competition between territorial males in small populations and may also signal low‐quality territories.

    Synthesis and applications. We demonstrate that bioacoustic monitoring can be used to not only estimate important population parameters of occupancy and abundance across a diverse tropical songbird community, but also enables quantification of behaviours considered relevant to individual fitness, yet unobtainable with conventional methods (e.g. point counts). Bioacoustics provides a viable approach to reliable automated large‐scale monitoring of hyperdiverse tropical forest systems under logging operations and other land‐use pressures.

     
    more » « less
  3. Abstract

    Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions.

    We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions.

    We experimentally manipulated the distribution of an essential food and reproductive resource in semi‐natural populations of forked fungus beetlesBolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half‐way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments.

    We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources.

    Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions.

     
    more » « less
  4. Abstract

    The neurogenomic mechanisms mediating male–male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non‐territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision‐making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free‐living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex‐steroid and neuropeptide signalling appeared to be important in mediating status‐specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN‐wide gene expression differences between territorial and floater males that could form the basis of ‘status‐specific’ neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems‐level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.

     
    more » « less
  5. Abstract

    While extensive research has focused on how social interactions evolve, the fitness consequences of the neuroendocrine mechanisms underlying these interactions have rarely been documented, especially in the wild. Here, we measure how the neuroendocrine mechanisms underlying male behaviour affect mating success and sperm competition in the ocellated wrasse (Symphodus ocellatus). In this species, males exhibit three alternative reproductive types. “Nesting males” provide parental care, defend territories and form cooperative associations with unrelated “satellites,” who cheat by sneaking fertilizations but help by reducing sperm competition from “sneakers” who do not cooperate or provide care. To measure the fitness consequences of the mechanisms underlying these social interactions, we used “phenotypic engineering” that involved administering an androgen receptor antagonist (flutamide) to wild, free‐living fish. Nesting males treated with flutamide shifted their aggression from sneakers to satellite males and experienced decreased submissiveness by sneaker males (which correlated with decreased nesting male mating success). The preoptic area (POA), a region controlling male reproductive behaviours, exhibited dramatic down‐regulation of androgen receptor (AR) and vasotocin 1a receptor (V1aR) mRNA following experimental manipulation of androgen signalling. We did not find a direct effect of the manipulation on male mating success, paternity or larval production. However, variation in neuroendocrine mechanisms generated by the experimental manipulation was significantly correlated with changes in behaviour and mating success: V1aR expression was negatively correlated with satellite‐directed aggression, and expression of its ligand arginine vasotocin (AVT) was positively correlated with courtship and mating success, thus revealing the potential for sexual selection on these mechanisms.

     
    more » « less