skip to main content

Title: A comparative study between outcomes of an in‐person versus online introductory field course

The COVID‐19 pandemic has disrupted many standard approaches to STEM education. Particularly impacted were field courses, which rely on specific natural spaces often accessed through shared vehicles. As in‐person field courses have been found to be particularly impactful for undergraduate student success in the sciences, we aimed to compare and understand what factors may have been lost or gained during the conversion of an introductory field course to an online format. Using a mixed methods approach comparing data from online and in‐person field‐course offerings, we found that while community building was lost in the online format, online participants reported increased self‐efficacy in research and observation skills and connection to their local space. The online field course additionally provided positive mental health breaks for students who described the time outside as a much‐needed respite. We maintain that through intentional design, online field courses can provide participants with similar outcomes to in‐person field courses.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 3625-3635
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Field courses can provide formative experiences that also reduce disparities in STEM education. Impacts of the ongoing COVID‐19 pandemic on‐field programs have been particularly severe, as many institutions shifted to online instruction. Some courses retained in‐person field experiences during the pandemic, and achieved high student learning outcomes. Here, I describe an approach to mitigating risk of COVID‐19 and other hazards during expedition‐based field courses, and student learning outcomes achieved using that approach. I applied comprehensive risk management to in‐person field expeditions that treated COVID‐19 as a hazard, requiring mitigation to maintain an acceptable low level of risk. Prior to broad availability of COVID‐19 vaccines, we applied a coronavirus‐free “bubble” strategy in which all participants passed a COVID‐19 PCR test immediately before departure and then avoided contact with people outside our bubble. In the future, vaccination can reduce risk further. We implemented additional safety factors to reduce risk of incidents that could require evacuation into medical facilities overloaded with COVID‐19 patients. The courses were successful: we had no infections or other serious incidents and student learning outcomes were transformative. The approach provides a model for conducting immersive field courses during the pandemic and beyond. Several field course networks are implementing similar approaches to restore valuable field education opportunities that have declined during the pandemic.

    more » « less
  2. The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology. 
    more » « less
  3. Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips. We used laboratory grades and a survey to assess differences in student learning and affinity outcomes for in-person and online exercises. Students who completed the in-person exercise earned better scores than their online peers. For example, in Fall 2021, the median lab score for the in-person group was 97.8%, compared to 91.7% for the online group. The in-person group also reported a significant ( p < 0.05) increase in how much they enjoyed learning about water, while online students reported a significant decrease. Online students also reported a significant decrease in how likely they would be to take another class in water or earth sciences. It is unclear whether the in-person exercise had better learning and affinity outcomes because of the hands-on, outdoor qualities of the lab or because the format allowed greater interaction among peers and teaching instructors (TAs). To mitigate disparities in student learning outcomes between the online and in-person course delivery, instructors will implement future changes to the online version of the lab to enhance interactions among students and TAs. 
    more » « less
  4. Additive manufacturing (AM) is prevalent in academic, industrial, and layperson use for the design and creation of objects via joining materials together in a layer upon layer fashion. However, few universities have an undergraduate course dedicated to it. Thus, using NSF IUSE support [grant number redacted for review] from the Exploration and Design Tier of the Engaged Student Learning Track, this project has created and implemented such a course at three large universities: Texas Tech (a Carnegie high research productivity and Hispanic Serving Institution), Kansas State (a Carnegie high research productivity and land grant university) and California State, Northridge (the largest of all the California State campuses and highly ranked in serving underprivileged students). Our research team includes engineering professors and a sociologist trained in assessment and K-12 outreach to determine the effects of the course on the undergraduate and high school students. We are currently in year two of the three years of NSF support. The course focuses on the fundamentals of the three families of prevailing AM processes: extrusion-based, powder-based, and liquid-based, as well as learning about practical solutions to additive manufacturing of common engineering materials including polymers, metals and alloys, ceramics, and composites. It has a lecture plus lab format, in that students learn the fundamentals in a classroom, but then apply and broaden their knowledge in lab projects and independent studies. Additionally, as outreach, we host field trips from local high schools during which the undergraduates give presentations about discrete AM skills, then lead the high school students through a lab project focused on those skills. This creates a pipeline of knowledge about AM for younger students as well as an opportunity for undergraduates to develop leadership and speaking skills while solidifying their knowledge. We are also in the process of uploading videos and lab projects to an online Google Classroom so that those with access to 3D printers in other areas can learn online for free. We are also self-publishing an accompanying textbook and lab manual. Beyond the course itself, one of the innovations of our project is the assessment strategy. For both undergraduates and high school students, we have been able to collect content area knowledge both before and after the class, as well as information about their attitudes towards engineering and self-efficacy beliefs. This has been particularly illuminating in regards to subgroups like women and students of color. Our research questions include: i) what is the knowledge growth about AM during this course? ii) does this differ by university? iii) does this differ by gender or race? iv) what are the best ways to make this course portable to other universities? Preliminary results indicate a statistically significant improvement in knowledge for all students. This was particularly true for women, which may indicate the promise of AM courses in decreasing the female dropout rate in engineering. Attitudes towards engineering and self-efficacy perceptions also differed after the class, but in varying ways by demographic subgroups and university. This will be explored more in the paper. 
    more » « less
  5. null (Ed.)
    In the past two decades, one of the most important trends in the US higher education system has been the steady increase in distance education through online courses. College administrators have expressed strong support for online education, signaling that the current online expansion will likely continue. While the supply and demand for online higher education is rapidly expanding, questions remain regarding its potential impact on increasing access, reducing costs, and improving student outcomes. Does online education enhance access to higher education among students who would not otherwise enroll in college? Can online courses create savings for students by reducing funding constraints on postsecondary institutions? Will technological innovations improve the quality of online education? This chapter provides a comprehensive review of existing research on online learning’s impact on access, cost, and student performance in higher education. Our review suggests that online education has the potential to expand access to college, especially among adult learners with multiple responsibilities. Yet, the online delivery format imposes additional challenges to effective instruction and learning. Indeed, existing studies on college courses typically find negative effects of online delivery on course outcomes and the online performance decrement is particularly large among academically less-prepared students. As a result, online courses without strong support to students may exacerbate educational inequities. We discuss a handful of practices that could better support students in online courses, including strategic course offering, student counseling, interpersonal interaction, warning and monitoring, and the professional development of faculty. Yet, college administrative data suggests that high-quality online courses with high degrees of instructor interaction and student support cost more to develop and administer than do face-to-face courses. 
    more » « less