Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials.
The notion of metasurface has inspired the innovation of various functional devices in the terahertz band, but the intrisinc dispersion restricts their application in broadband scenarios. Here, two terahertz achromatic linear‐phase‐gradient metasurface devices are demonstrated, which are a beam deflector and a beam splitter, respectively. The phase and dispersion of the metasurfaces are simultaneously engineered by changing the geometric parameters of the unit cells made of silicon gratings and pillars. The simulated and experimental results demonstrate the achromatic feasibility of the beam deflector from 0.6 to 1.2 THz and of the beam splitter from 0.6 to 1.1 THz. The transmittances and the splitting ratios of the achromatic beam splitter are also analyzed. The metasurface based achromatic beam deflector and splitter presented here not only enrich the terahertz functional devices, but the methods and structures may also promote the research of broadband terahertz metasurfaces.
more » « less- NSF-PAR ID:
- 10454253
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Metasurfaces have been continuously garnering attention in both scientific and industrial fields owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. Terahertz vortex beams have become a focus of research in recent years due to their prominent role in many cutting-edge applications. However, traditional terahertz vortex beam plates are often faced with challenges including large size, low efficiency, and limited working bandwidth. Here, we propose and experimentally demonstrate highly efficient and broadband vortex beam plates based on metasurface in the terahertz region. The experimental results well verify that the designed metasurfaces can efficiently generate terahertz vortex beams with different orbital angular momentum topological charges in the range of 0.5–1 THz. Notably, the maximum efficiency can reach about 65% at 0.5 THz. The proposed devices may play a vital role in developing vortex beams-related terahertz applications.
-
Graphene is a promising materials platform for metasurface flat optics at terahertz wavelengths, with the important advantage of active tunability. Here we review recent work aimed at the development of tunable graphene metasurfaces for THz wavefront shaping (including beam-steering metamirrors and metalenses) and light emission. Various design strategies for the constituent meta-units are presented, ranging from metallic phase-shifting elements combined with a nearby graphene sheet for active tuning to graphene plasmonic resonators providing the required phase control or radiation mechanism. The key challenge in the development of these devices, related to the limited radiative coupling of graphene plasmonic excitations, is discussed in detail together with recently proposed solutions. The resulting metasurface technology can be expected to have a far-reaching impact on a wide range of device applications for THz imaging, sensing, and future wireless communications.
-
Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator–metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures’ design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes.
-
Abstract Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length over
λ = 1200–1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.