skip to main content


Title: Ultra‐high‐resolution mapping of biocrusts with Unmanned Aerial Systems
Abstract

Biological soil crusts (biocrusts) occur in drylands globally where they support ecosystem functioning by increasing soil stability, reducing dust emissions and modifying soil resource availability (e.g. water, nutrients). Determining biocrust condition and extent across landscapes continues to present considerable challenges to scientists and land managers. Biocrusts grow in patches, cover vast expanses of rugged terrain and are vulnerable to physical disturbance associated with ground‐based mapping techniques. As such, remote sensing offers promising opportunities to map and monitor biocrusts. While satellite‐based remote sensing has been used to detect biocrusts at relatively large spatial scales, few studies have used high‐resolution imagery from Unmanned Aerial Systems (UAS) to map fine‐scale patterns of biocrusts. We collected sub‐centimeter, true color 3‐band imagery at 10 plots in sagebrush and pinyon‐juniper woodland communities in a semiarid ecosystem in the southwestern US and used object‐based image analysis (OBIA) to segment and classify the imagery into maps of light and dark biocrusts, bare soil, rock and various vegetation covers. We used field data to validate the classifications and assessed the spatial distribution and configuration of different classes using fragmentation metrics. Map accuracies ranged from 46 to 77% (average 65%) and were higher in pinyon‐juniper (average 70%) versus sagebrush (average 60%) plots. Biocrust classes showed generally high accuracies at both pinyon‐juniper plots (average dark crust = 70%; light crust = 80%) and sagebrush plots (average dark crust = 69%; light crust = 77%). Point cloud density, sun elevation and spectral confusion between vegetation cover explained some differences in accuracy across plots. Spatial analyses of classified maps showed that biocrust patches in pinyon‐juniper plots were generally larger, more aggregated and contiguous than in sagebrush plots. Pinyon‐juniper plots also had greater patch richness and a lower Shannon evenness index than sagebrush plots, suggesting greater soil cover heterogeneity in this plant community type.

 
more » « less
NSF-PAR ID:
10454295
Author(s) / Creator(s):
 ;  ;  ;  ;  ; ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Remote Sensing in Ecology and Conservation
Volume:
6
Issue:
4
ISSN:
2056-3485
Page Range / eLocation ID:
p. 441-456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The size and frequency of resource pulses can affect plant interactions and increase the abundance of invasive species relative to native species. We examined resource pulses generated during the desiccation and rehydration of communities of native biological soil crust (biocrust)‐forming mosses, in the context of positive associations between biocrusts and the invasive forb,Centaurea stoebe.

    We surveyedCentaureaand biocrust cover and evaluated how interactions amongCentaurea, biocrusts and water pulses influenced plant biomass and soil nitrogen in a field experiment.Centaureaseedling and biocrust interactions were also compared in a greenhouse experiment to evaluate differences related to life stage.

    In field surveys,Centaureaand biocrusts were positively associated. Across water pulse treatments, biocrust biomass decreased whenCentaureawas removed, indicating thatCentaureafacilitated biocrusts. Biocrusts did not affect adultCentaureain the field, butCentaureaseedling biomass was greater when grown with biocrusts in the greenhouse. Water pulses did not affect plant biomass, but interactions betweenCentaureaand biocrusts corresponded with variation in the effect of water pulses on soil nitrogen which were not evident whenCentaureaor biocrusts were grown alone. Twenty‐four hours after large water pulses were added, soilwas nine times higher in plots where biocrusts andCentaureaco‐occurred compared with small water pulse plots. In these same plots, soiltended to be lower at the end of the experiment.

    These results highlight positive interactions between an invasive exotic forb and native moss biocrust. Water pulses influenced soil nitrogen availability when both plants co‐occurred, but did not affect plant biomass, suggesting that resource pulses and species interactions can interact to affect ecosystem processes.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Biological soil crusts (biocrusts) are crucial components of dryland ecosystems, but they are slow to recover following disturbance. Herein, we evaluated several methods for restoring lichen‐moss biocrusts that included factorial applications of moss fragments in a water‐slurry (1) with and without lichen fragments (to restore biocrust taxonomic structure), (2) with and without clay (to facilitate establishment), and (3) with and without jute ground cloth (to facilitate establishment). Three and four years after inoculation, moss and lichen cover was up to five and eight times higher on jute ground cloth than on bare ground, respectively. Lichen cover was six times higher in plots where lichen fragments were added. Clay amendments did not increase moss or lichen establishment. To understand the effects of biocrust recovery on soil properties, we measured soil inorganic nitrogen, microbial biomass carbon, and soil water availability in restoration and control plots. Restored biocrusts decreased inorganic NH4‐N availability by 67% when compared to controls 3 years after inoculation, but did not influence the availability of inorganic NO3‐N, soil water, or microbial biomass carbon. Our results demonstrate that adding a biocrust inoculant to jute ground cloth can expedite recovery of lichen‐moss biocrust and reestablish its influence on soil properties within a few years.

     
    more » « less
  3. Abstract

    In the western USA, shifts from snow to rain precipitation regimes and increases in western juniper cover in shrub‐dominated landscapes can alter surface water input via changes in snowmelt and throughfall. To better understand how shifts in both precipitation and semi‐arid vegetation cover alter above‐ground hydrological processes, we assessed how rain interception differs between snow and rain surface water input; how western juniper alters snowpack dynamics; and how these above‐ground processes differ across western juniper, mountain big sagebrush and low sagebrush plant communities. We collected continuous surface water input with four large lysimeters, interspace and below‐canopy snow depth data and conducted periodic snow surveys for two consecutive water years (2013 and 2014). The ratio of interspace to below‐canopy surface water input was greater for snow relative to rain events, averaging 79.4% and 54.8%, respectively. The greater surface water input ratio for snow is in part due to increased deposition of redistributed snow under the canopy. We simulated above‐ground energy and water fluxes in western juniper, low sagebrush and mountain big sagebrush for two 8‐year periods under current and projected mid‐21st century warmer temperatures with the Simultaneous Heat and Water (SHAW) model. Juniper compared with low and mountain sagebrush reduced surface water input by an average of 138 mm or 24% of the total site water budget. Conversely, warming temperatures reduced surface water input by only an average of 14 mm across the three vegetation types. The future (warmer) simulations resulted in earlier snow disappearance and surface water input by 51 and 45 days, respectively, across juniper, low sagebrush and mountain sagebrush. Information from this study can help land managers in the sagebrush steppe understand how both shifts in climate and semi‐arid vegetation will alter fundamental hydrological processes. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  4. Climate change is expanding drylands even as land use practices degrade them. Representing ∼40% of Earth’s terrestrial surface, drylands rely on biological soil crusts (biocrusts) for key ecosystem functions including soil stability, biogeochemical cycling, and water capture. Understanding how biocrusts adapt to climate change is critical to understanding how dryland ecosystems will function with altered climate. We investigated the sensitivity of biocrusts to experimentally imposed novel climates to track changes in productivity and stability under both warming and cooling scenarios. We established three common gardens along an elevational-climate gradient on the Colorado Plateau. Mature biocrusts were collected from each site and reciprocally transplanted intact. Over 20 months we monitored visible species composition and cover, chlorophyll a, and the composition of soil bacterial communities using high throughput sequencing. We hypothesized that biocrusts replanted at their home site would show local preference, and biocrusts transplanted to novel environments would maintain higher cover and stability at elevations higher than their origin, compared to at elevations lower than their origin. We expected responses of the visible biocrust cover and soil bacterial components of the biocrust community to be coupled, with later successional taxa showing higher sensitivity to novel environments. Only high elevation sourced biocrusts maintained higher biocrust cover and community stability at their site of origin. Biocrusts from all sources had higher cover and stability in the high elevation garden. Later successional taxa decreased cover in low elevation gardens, suggesting successional reversal with warming. Visible community composition was influenced by both source and transplant environment. In contrast, soil bacterial community composition was not influenced by transplant environments but retained fidelity to the source. Thus, responses of the visible and soil bacterial components of the biocrust community were not coupled. Synthesis: Our results suggest biocrust communities are sensitive to climate change, and loss of species and function can be expected, while associated soil bacteria may be buffered against rapid change. 
    more » « less
  5. Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture. Expected final online publication date for the Annual Review of Microbiology, Volume 77 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less